{"title":"Advancements in secondary and backscattered electron energy spectra and yields analysis: From theory to applications","authors":"Simone Taioli, Maurizio Dapor","doi":"10.1016/j.surfrep.2024.100646","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decade, experimental microscopy and spectroscopy have made significant progress in the study of the morphological, optical, electronic and transport properties of materials. These developments include higher spatial resolution, shorter acquisition times, more efficient monochromators and electron analysers, improved contrast imaging and advancements in sample preparation techniques. These advances have driven the need for more accurate theoretical descriptions and predictions of material properties. Computer simulations based on first principles and Monte Carlo methods have emerged as a rapidly growing field for modelling the interaction of charged particles, such as electron, proton and ion beams, with various systems, such as slabs, nanostructures and crystals. This report delves into the theoretical and computational approaches to modelling the physico-chemical mechanisms that occur when charged beams interact with a medium. These mechanisms encompass single and collective electronic excitation, ionisation of the target atoms and the generation of a secondary electron cascade that deposits energy into the irradiated material. We show that the combined application of ab initio methods, which are able to model the dynamics of interacting many-fermion systems, and Monte Carlo methods, which capture statistical fluctuations in energy loss mechanisms by random sampling, proves to be an optimal strategy for the accurate description of charge transport in solids. This joint quantitative approach enables the theoretical interpretation of excitation, loss and secondary electron spectra, the analysis of the chemical composition and dielectric properties of solids and contributes to our understanding of irradiation-induced damage in materials, including those of biological significance.</div></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"80 1","pages":"Article 100646"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572924000256","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, experimental microscopy and spectroscopy have made significant progress in the study of the morphological, optical, electronic and transport properties of materials. These developments include higher spatial resolution, shorter acquisition times, more efficient monochromators and electron analysers, improved contrast imaging and advancements in sample preparation techniques. These advances have driven the need for more accurate theoretical descriptions and predictions of material properties. Computer simulations based on first principles and Monte Carlo methods have emerged as a rapidly growing field for modelling the interaction of charged particles, such as electron, proton and ion beams, with various systems, such as slabs, nanostructures and crystals. This report delves into the theoretical and computational approaches to modelling the physico-chemical mechanisms that occur when charged beams interact with a medium. These mechanisms encompass single and collective electronic excitation, ionisation of the target atoms and the generation of a secondary electron cascade that deposits energy into the irradiated material. We show that the combined application of ab initio methods, which are able to model the dynamics of interacting many-fermion systems, and Monte Carlo methods, which capture statistical fluctuations in energy loss mechanisms by random sampling, proves to be an optimal strategy for the accurate description of charge transport in solids. This joint quantitative approach enables the theoretical interpretation of excitation, loss and secondary electron spectra, the analysis of the chemical composition and dielectric properties of solids and contributes to our understanding of irradiation-induced damage in materials, including those of biological significance.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.