Thinnapong Wongpakdee , Duangjai Nacapricha , Bruce McCord
{"title":"Modification of screen-printed electrodes using gold nanostructures for SERS detection of low explosives","authors":"Thinnapong Wongpakdee , Duangjai Nacapricha , Bruce McCord","doi":"10.1016/j.forc.2024.100636","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores a novel application of surface-enhanced Raman spectroscopy (SERS) as a highly sensitive analytical tool for forensic analysis. We utilized a screen-printed gold electrode (SPGE) as a SERS active material, integrated with a portable Raman instrument for the rapid detection of low explosives. To enhance sensitivity while ensuring ease of handling, we conducted ex situ electrodeposition of gold nanostructures on the SPGE surface prior to analysis. The targeted molecules, comprising potassium nitrate (KNO<sub>3</sub>), potassium perchlorate (KClO<sub>4</sub>), sodium benzoate (C<sub>6</sub>H<sub>5</sub>COONa), diphenylamine (DPA) with its nitro derivatives, methyl centralite (MC) and ethyl centralite (EC), were studied using the proposed methodology. The developed system successfully provided distinctive SERS spectra fingerprints for low explosives (black powder, black powder substitutes, and smokeless powder) within seconds of analysis time. This approach holds promise for rapid, efficient, and accurate forensic analysis in real-world scenarios.</div></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"42 ","pages":"Article 100636"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468170924000882","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores a novel application of surface-enhanced Raman spectroscopy (SERS) as a highly sensitive analytical tool for forensic analysis. We utilized a screen-printed gold electrode (SPGE) as a SERS active material, integrated with a portable Raman instrument for the rapid detection of low explosives. To enhance sensitivity while ensuring ease of handling, we conducted ex situ electrodeposition of gold nanostructures on the SPGE surface prior to analysis. The targeted molecules, comprising potassium nitrate (KNO3), potassium perchlorate (KClO4), sodium benzoate (C6H5COONa), diphenylamine (DPA) with its nitro derivatives, methyl centralite (MC) and ethyl centralite (EC), were studied using the proposed methodology. The developed system successfully provided distinctive SERS spectra fingerprints for low explosives (black powder, black powder substitutes, and smokeless powder) within seconds of analysis time. This approach holds promise for rapid, efficient, and accurate forensic analysis in real-world scenarios.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.