Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-12-28 DOI:10.1016/j.cam.2024.116475
Megha Varshney , Pravesh Kumar , Laith Abualigah
{"title":"Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems","authors":"Megha Varshney ,&nbsp;Pravesh Kumar ,&nbsp;Laith Abualigah","doi":"10.1016/j.cam.2024.116475","DOIUrl":null,"url":null,"abstract":"<div><div>To solve global optimization problems, the Aquila Optimizer (AO) algorithm was created recently and is based on the hunting habits of Aquila birds. The Remora Optimization Algorithm (ROA) is combined with a novel Aquila optimizer in this study to create a hybrid version that generates new local solutions based on the best available ones, thereby improving searchability. Additionally, the implementation of dynamic oppositional-based learning (DOL) techniques facilitates both the exploration and exploitation of a search field while preserving an appropriate balance between them. Designated RODAO, is the proposed algorithm. The fundamental characteristic of the proposed approach is the use of Remora's ability to prevent premature convergence and local search problems, as well as the DOL strategy to preserve high-quality solutions and variety among the RODAO's solutions. In order to assess these competencies in RODAO, the IEEE CEC 2017 benchmark functions as well as a traditional set of well-known benchmark functions have been used. The robustness and efficiency of the method are guaranteed by a number of performance measurements used on RODAO, including statistical tests and convergence graphs. Three popular engineering optimization issues are also solved in the paper using the suggested RODAO technique. The analysis and numerical experiments show that real-world optimization issues can be successfully solved by the proposed algorithm or RODAO.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"462 ","pages":"Article 116475"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724007234","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To solve global optimization problems, the Aquila Optimizer (AO) algorithm was created recently and is based on the hunting habits of Aquila birds. The Remora Optimization Algorithm (ROA) is combined with a novel Aquila optimizer in this study to create a hybrid version that generates new local solutions based on the best available ones, thereby improving searchability. Additionally, the implementation of dynamic oppositional-based learning (DOL) techniques facilitates both the exploration and exploitation of a search field while preserving an appropriate balance between them. Designated RODAO, is the proposed algorithm. The fundamental characteristic of the proposed approach is the use of Remora's ability to prevent premature convergence and local search problems, as well as the DOL strategy to preserve high-quality solutions and variety among the RODAO's solutions. In order to assess these competencies in RODAO, the IEEE CEC 2017 benchmark functions as well as a traditional set of well-known benchmark functions have been used. The robustness and efficiency of the method are guaranteed by a number of performance measurements used on RODAO, including statistical tests and convergence graphs. Three popular engineering optimization issues are also solved in the paper using the suggested RODAO technique. The analysis and numerical experiments show that real-world optimization issues can be successfully solved by the proposed algorithm or RODAO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
Global accelerated Hermitian and skew–Hermitian splitting preconditioner for the solution of discrete Stokes problems Greedy Kaczmarz methods for nonlinear equation Fast numerical derivatives of univariate functions on non-uniform grids A sharpening median filter for Cauchy noise with wavelet based regularization Solution of linear ill-posed operator equations by modified truncated singular value expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1