{"title":"Quadratic point estimate method for probabilistic moments computation","authors":"Minhyeok Ko, Konstantinos G. Papakonstantinou","doi":"10.1016/j.probengmech.2024.103705","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents in detail the originally developed Quadratic Point Estimate Method (QPEM), aimed at efficiently and accurately computing the first four output moments of probabilistic distributions, using <span><math><mrow><mn>2</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></math></span> sample (or sigma) points, with <span><math><mi>n</mi></math></span>, the number of input random variables. The proposed QPEM particularly offers an effective, superior, and practical alternative to existing sampling and quadrature methods for low- and moderately-high-dimensional problems. Detailed theoretical derivations are provided proving that the proposed method can achieve a fifth or higher-order accuracy for symmetric input distributions. Various numerical examples, from simple polynomial functions to nonlinear finite element analyses with random field representations, support the theoretical findings and further showcase the validity, efficiency, and applicability of the QPEM, from low- to high-dimensional problems.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"79 ","pages":"Article 103705"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001279","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents in detail the originally developed Quadratic Point Estimate Method (QPEM), aimed at efficiently and accurately computing the first four output moments of probabilistic distributions, using sample (or sigma) points, with , the number of input random variables. The proposed QPEM particularly offers an effective, superior, and practical alternative to existing sampling and quadrature methods for low- and moderately-high-dimensional problems. Detailed theoretical derivations are provided proving that the proposed method can achieve a fifth or higher-order accuracy for symmetric input distributions. Various numerical examples, from simple polynomial functions to nonlinear finite element analyses with random field representations, support the theoretical findings and further showcase the validity, efficiency, and applicability of the QPEM, from low- to high-dimensional problems.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.