Nefeli Makrygianni , Shunqi Pan , Michaela Bray , Jean R. Bidlot
{"title":"Modelling of hurricane Dorian via the implementation of Wave Boundary Layer Model (WBLM) within the OpenIFS","authors":"Nefeli Makrygianni , Shunqi Pan , Michaela Bray , Jean R. Bidlot","doi":"10.1016/j.ocemod.2024.102469","DOIUrl":null,"url":null,"abstract":"<div><div>For over three decades numerous studies have tried to understand the processes and impacts of air–sea interactions on the atmosphere and oceans, particularly in predicting winds and waves under tropical cyclone conditions. Literature has highlighted the critical role of momentum transfer, with various parameterisations proposed for the momentum fluxes, through the drag coefficient (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>) and the roughness (<span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>). However, accurate predictions still remain a significant challenge. Recently, Du et al. (2017,2019) proposed a comprehensive calculation of the source input function using a Wave Boundary Layer Model (WBLM). However, their study used a standalone model rather than a coupled system. Given the established significance of two-way wind-wave systems (Janssen, 1991), this study implements the WBLM within a coupled model (OpenIFS), to evaluate its impact and discuss the potential and limitations of the method. Numerical simulations were conducted using the WBLM scheme for a selected tropical cyclone, with results compared against in-situ buoy measurements and satellite altimeter data. Furthermore, the new approach’s results were compared with outputs using the default, well-established source input function of OpenIFS (Janssen et al., 1989; Janssen, 1991) to further assess its effectiveness. The findings suggest that the WBLM tends to reduce the commonly overestimated drag and Charnock coefficients. However, comparisons with in-situ observations indicate that the new approach requires substantial refinements to improve wind and wave predictions, since there are cases that the WBLM scheme under-performs the default scheme. This discrepancy may be attributed to the calculation of high-frequency impacts on momentum exchanges.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102469"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001550","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For over three decades numerous studies have tried to understand the processes and impacts of air–sea interactions on the atmosphere and oceans, particularly in predicting winds and waves under tropical cyclone conditions. Literature has highlighted the critical role of momentum transfer, with various parameterisations proposed for the momentum fluxes, through the drag coefficient () and the roughness (). However, accurate predictions still remain a significant challenge. Recently, Du et al. (2017,2019) proposed a comprehensive calculation of the source input function using a Wave Boundary Layer Model (WBLM). However, their study used a standalone model rather than a coupled system. Given the established significance of two-way wind-wave systems (Janssen, 1991), this study implements the WBLM within a coupled model (OpenIFS), to evaluate its impact and discuss the potential and limitations of the method. Numerical simulations were conducted using the WBLM scheme for a selected tropical cyclone, with results compared against in-situ buoy measurements and satellite altimeter data. Furthermore, the new approach’s results were compared with outputs using the default, well-established source input function of OpenIFS (Janssen et al., 1989; Janssen, 1991) to further assess its effectiveness. The findings suggest that the WBLM tends to reduce the commonly overestimated drag and Charnock coefficients. However, comparisons with in-situ observations indicate that the new approach requires substantial refinements to improve wind and wave predictions, since there are cases that the WBLM scheme under-performs the default scheme. This discrepancy may be attributed to the calculation of high-frequency impacts on momentum exchanges.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.