Effects of yttrium addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy

IF 2.2 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters: X Pub Date : 2025-01-27 DOI:10.1016/j.mlblux.2025.100239
Wanxin Liu , Shengjie Wang , Xiaoxin Zhang , Yanchang Liu , Bin Liang , Shilei Li
{"title":"Effects of yttrium addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy","authors":"Wanxin Liu ,&nbsp;Shengjie Wang ,&nbsp;Xiaoxin Zhang ,&nbsp;Yanchang Liu ,&nbsp;Bin Liang ,&nbsp;Shilei Li","doi":"10.1016/j.mlblux.2025.100239","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of Y addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy were investigated. Electron backscattered diffraction results show that no recrystallization was observed in the warm-rolled and annealed Nb-1Zr-0.1C alloys with different Y additions. In the cold-rolled and annealed Nb-1Zr-0.1C alloy with 0.1 % Y addition, Y<sub>2</sub>O<sub>3</sub> was continuously distributed along the grain boundaries of the Nb matrix that had undergone complete recrystallization. While as the Y addition increased to 0.4 %, Y<sub>2</sub>O<sub>3</sub> restored a granular distribution in the cold-rolled and annealed Nb-1Zr-0.1C alloy. The addition of Y element to the Nb-1Zr-0.1C alloy could enhance both the strength and plasticity to a certain extent. Compared with the as-cast and warm-rolled and annealed samples, the Nb-1Zr-0.1C alloy with different Y additions after cold-rolling and annealing exhibited a higher work hardening rate.</div></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"25 ","pages":"Article 100239"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015082500002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of Y addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy were investigated. Electron backscattered diffraction results show that no recrystallization was observed in the warm-rolled and annealed Nb-1Zr-0.1C alloys with different Y additions. In the cold-rolled and annealed Nb-1Zr-0.1C alloy with 0.1 % Y addition, Y2O3 was continuously distributed along the grain boundaries of the Nb matrix that had undergone complete recrystallization. While as the Y addition increased to 0.4 %, Y2O3 restored a granular distribution in the cold-rolled and annealed Nb-1Zr-0.1C alloy. The addition of Y element to the Nb-1Zr-0.1C alloy could enhance both the strength and plasticity to a certain extent. Compared with the as-cast and warm-rolled and annealed samples, the Nb-1Zr-0.1C alloy with different Y additions after cold-rolling and annealing exhibited a higher work hardening rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
50
审稿时长
114 days
期刊最新文献
Effect of the surface-active elements on grain boundary oxidation of hot-stamped steel Effects of yttrium addition on microstructure and mechanical property of Nb-1Zr-0.1C alloy Quantitative method developing hydrogen standard sample for GDOES Blue emission stimulated by Dy3+ transitions in KCaF3: A fluoride-based phosphor Preparation of VO2/PVDF composite film and its modulating optical performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1