{"title":"Multi-layer feature fusion based image style transfer with arbitrary text condition","authors":"Yue Yu, Jingshuo Xing, Nengli Li","doi":"10.1016/j.image.2024.117243","DOIUrl":null,"url":null,"abstract":"<div><div>Style transfer refers to the conversion of images in two different domains. Compared with the style transfer based on the style image, the image style transfer through the text description is more free and applicable to more practical scenarios. However, the image style transfer method under the text condition needs to be trained and optimized for different text and image inputs each time, resulting in limited style transfer efficiency. Therefore, this paper proposes a multi-layer feature fusion based style transfer method (MlFFST) with arbitrary text condition. To address the problems of distortion and missing semantic content, we also introduce a multi-layer attention normalization module. The experimental results show that the method in this paper can generate stylized results with high quality, good effect and high stability for images and videos. And this method can meet real-time requirements to generate more artistic and aesthetic images and videos.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"132 ","pages":"Article 117243"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Style transfer refers to the conversion of images in two different domains. Compared with the style transfer based on the style image, the image style transfer through the text description is more free and applicable to more practical scenarios. However, the image style transfer method under the text condition needs to be trained and optimized for different text and image inputs each time, resulting in limited style transfer efficiency. Therefore, this paper proposes a multi-layer feature fusion based style transfer method (MlFFST) with arbitrary text condition. To address the problems of distortion and missing semantic content, we also introduce a multi-layer attention normalization module. The experimental results show that the method in this paper can generate stylized results with high quality, good effect and high stability for images and videos. And this method can meet real-time requirements to generate more artistic and aesthetic images and videos.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.