{"title":"AggNet: Learning to aggregate faces for group membership verification","authors":"Marzieh Gheisari , Javad Amirian , Teddy Furon , Laurent Amsaleg","doi":"10.1016/j.image.2024.117237","DOIUrl":null,"url":null,"abstract":"<div><div>In certain applications of face recognition, our goal is to verify whether an individual belongs to a particular group while keeping their identity undisclosed. Existing methods have suggested a process of quantizing pre-computed face descriptors into discrete embeddings and aggregating them into a single representation for the group. However, this mechanism is only optimized for a given closed set of individuals and requires relearning the group representations from scratch whenever the groups change. In this paper, we introduce a deep architecture that simultaneously learns face descriptors and the aggregation mechanism to enhance overall performance. Our system can be utilized for new groups comprising individuals who have never been encountered before, and it easily handles new memberships or the termination of existing memberships. Through experiments conducted on multiple extensive, real-world face datasets, we demonstrate that our proposed method achieves superior verification performance compared to other baseline approaches.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"132 ","pages":"Article 117237"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001383","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In certain applications of face recognition, our goal is to verify whether an individual belongs to a particular group while keeping their identity undisclosed. Existing methods have suggested a process of quantizing pre-computed face descriptors into discrete embeddings and aggregating them into a single representation for the group. However, this mechanism is only optimized for a given closed set of individuals and requires relearning the group representations from scratch whenever the groups change. In this paper, we introduce a deep architecture that simultaneously learns face descriptors and the aggregation mechanism to enhance overall performance. Our system can be utilized for new groups comprising individuals who have never been encountered before, and it easily handles new memberships or the termination of existing memberships. Through experiments conducted on multiple extensive, real-world face datasets, we demonstrate that our proposed method achieves superior verification performance compared to other baseline approaches.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.