Model-based assessment of sustainable adaptation options for an industrialised meso‑tidal estuary

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-11-28 DOI:10.1016/j.ocemod.2024.102467
Johannes Pein , Joanna Staneva , Johanna Biederbick , Corinna Schrum
{"title":"Model-based assessment of sustainable adaptation options for an industrialised meso‑tidal estuary","authors":"Johannes Pein ,&nbsp;Joanna Staneva ,&nbsp;Johanna Biederbick ,&nbsp;Corinna Schrum","doi":"10.1016/j.ocemod.2024.102467","DOIUrl":null,"url":null,"abstract":"<div><div>Human-shaped estuaries play a vital role in supporting a range of economic, ecological and social functions. Such cultural landscapes often require enormous services, which may be provided at the expense of the ecological status and the ability to provide ecosystem services. This is exemplified by the estuaries of the German North Sea coast, of which the Elbe estuary is the most prominent and stands out as the largest and most consistently developed. The port of Hamburg, which is the primary economic driver in the region, has shaped the morphology of the surrounding water body. This has resulted in a number of hydrodynamic effects and sedimentological and ecological consequences, which have been well documented and subject to extensive debate. Despite this understanding, however, there is a tendency to propose solutions that are limited to the smallest local scales and are unable to mitigate the consequences of human interventions that have taken place or continue to take place at the estuarine and catchment scales. The lack of illustrative and quantitative scenario simulations and holistic assessments also hinders the ability to implement ambitious adaptation measures. To step forward, this study presents a model-based assessment including scenario simulations of four prototypical adaptation measures that are potentially capable of mitigating the problems of high turbidity, sedimentation and oxygen minimum without compromising coastal protection. The experimental design comprises a two-month morphodynamic simulation for each adaptation scenario and a one-year simulation of coupled hydrodynamics and ecology. The model simulations demonstrate that the proposed measures have the potential to reduce the siltation of the upper estuary, thereby reducing the need for extensive and costly maintenance dredging. Furthermore, the simulated measures also reduce the tidal range in the densely populated upper estuary, albeit to varying degrees. This also applies to mitigating the consequences of eutrophication, such as the oxygen content in the navigation channel. These differences, as well as the differing scale and effort associated with the four measures, form the basis of a final comparative evaluation based on universal sustainability criteria.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"194 ","pages":"Article 102467"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001537","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Human-shaped estuaries play a vital role in supporting a range of economic, ecological and social functions. Such cultural landscapes often require enormous services, which may be provided at the expense of the ecological status and the ability to provide ecosystem services. This is exemplified by the estuaries of the German North Sea coast, of which the Elbe estuary is the most prominent and stands out as the largest and most consistently developed. The port of Hamburg, which is the primary economic driver in the region, has shaped the morphology of the surrounding water body. This has resulted in a number of hydrodynamic effects and sedimentological and ecological consequences, which have been well documented and subject to extensive debate. Despite this understanding, however, there is a tendency to propose solutions that are limited to the smallest local scales and are unable to mitigate the consequences of human interventions that have taken place or continue to take place at the estuarine and catchment scales. The lack of illustrative and quantitative scenario simulations and holistic assessments also hinders the ability to implement ambitious adaptation measures. To step forward, this study presents a model-based assessment including scenario simulations of four prototypical adaptation measures that are potentially capable of mitigating the problems of high turbidity, sedimentation and oxygen minimum without compromising coastal protection. The experimental design comprises a two-month morphodynamic simulation for each adaptation scenario and a one-year simulation of coupled hydrodynamics and ecology. The model simulations demonstrate that the proposed measures have the potential to reduce the siltation of the upper estuary, thereby reducing the need for extensive and costly maintenance dredging. Furthermore, the simulated measures also reduce the tidal range in the densely populated upper estuary, albeit to varying degrees. This also applies to mitigating the consequences of eutrophication, such as the oxygen content in the navigation channel. These differences, as well as the differing scale and effort associated with the four measures, form the basis of a final comparative evaluation based on universal sustainability criteria.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
Correcting physics-based global tide and storm water level forecasts with the temporal fusion transformer Cross-scale prediction for the Laurentian Great Lakes Investigating appropriate artificial intelligence approaches to reliably predict coastal wave overtopping and identify process contributions The Bayesian backtracking problem in oceanic drift modelling Accuracy evaluation of global tidal models in the Bohai Sea via the combination of tide gauges and GFO satellite altimeters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1