Yuanyuan Liu , Hong Zhu , Zhong Wu , Sen Du , Shuning Wu , Jing Shi
{"title":"Adaptive semantic guidance network for video captioning","authors":"Yuanyuan Liu , Hong Zhu , Zhong Wu , Sen Du , Shuning Wu , Jing Shi","doi":"10.1016/j.cviu.2024.104255","DOIUrl":null,"url":null,"abstract":"<div><div>Video captioning aims to describe video content using natural language, and effectively integrating information of visual and textual is crucial for generating accurate captions. However, we find that the existing methods over-rely on the language-prior information about the text acquired by training, resulting in the model tending to output high-frequency fixed phrases. In order to solve the above problems, we extract high-quality semantic information from multi-modal input and then build a semantic guidance mechanism to adapt to the contribution of visual semantics and text semantics to generate captions. We propose an Adaptive Semantic Guidance Network (ASGNet) for video captioning. The ASGNet consists of a Semantic Enhancement Encoder (SEE) and an Adaptive Control Decoder (ACD). Specifically, the SEE helps the model obtain high-quality semantic representations by exploring the rich semantic information from visual and textual. The ACD dynamically adjusts the contribution weights of semantics about visual and textual for word generation, guiding the model to adaptively focus on the correct semantic information. These two modules work together to help the model overcome the problem of over-reliance on language priors, resulting in more accurate video captions. Finally, we conducted extensive experiments on commonly used video captioning datasets. MSVD and MSR-VTT reached the state-of-the-art, and YouCookII also achieved good performance. These experiments fully verified the advantages of our method.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"251 ","pages":"Article 104255"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003369","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Video captioning aims to describe video content using natural language, and effectively integrating information of visual and textual is crucial for generating accurate captions. However, we find that the existing methods over-rely on the language-prior information about the text acquired by training, resulting in the model tending to output high-frequency fixed phrases. In order to solve the above problems, we extract high-quality semantic information from multi-modal input and then build a semantic guidance mechanism to adapt to the contribution of visual semantics and text semantics to generate captions. We propose an Adaptive Semantic Guidance Network (ASGNet) for video captioning. The ASGNet consists of a Semantic Enhancement Encoder (SEE) and an Adaptive Control Decoder (ACD). Specifically, the SEE helps the model obtain high-quality semantic representations by exploring the rich semantic information from visual and textual. The ACD dynamically adjusts the contribution weights of semantics about visual and textual for word generation, guiding the model to adaptively focus on the correct semantic information. These two modules work together to help the model overcome the problem of over-reliance on language priors, resulting in more accurate video captions. Finally, we conducted extensive experiments on commonly used video captioning datasets. MSVD and MSR-VTT reached the state-of-the-art, and YouCookII also achieved good performance. These experiments fully verified the advantages of our method.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems