ASELMAR: Active and semi-supervised learning-based framework to reduce multi-labeling efforts for activity recognition

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2025-02-01 DOI:10.1016/j.cviu.2024.104269
Aydin Saribudak , Sifan Yuan , Chenyang Gao , Waverly V. Gestrich-Thompson , Zachary P. Milestone , Randall S. Burd , Ivan Marsic
{"title":"ASELMAR: Active and semi-supervised learning-based framework to reduce multi-labeling efforts for activity recognition","authors":"Aydin Saribudak ,&nbsp;Sifan Yuan ,&nbsp;Chenyang Gao ,&nbsp;Waverly V. Gestrich-Thompson ,&nbsp;Zachary P. Milestone ,&nbsp;Randall S. Burd ,&nbsp;Ivan Marsic","doi":"10.1016/j.cviu.2024.104269","DOIUrl":null,"url":null,"abstract":"<div><div>Manual annotation of unlabeled data for model training is expensive and time-consuming, especially for visual datasets requiring domain-specific experience for multi-labeling, such as video records generated in hospital settings. There is a need to build frameworks to reduce human labeling efforts while improving training performance. Semi-supervised learning is widely used to generate predictions for unlabeled samples in a partially labeled datasets. Active learning can be used with semi-supervised learning to annotate unlabeled samples to reduce the sampling bias due to the label predictions. We developed the <span>aselmar</span> framework based on active and semi-supervised learning techniques to reduce the time and effort associated with multi-labeling of unlabeled samples for activity recognition. <span>aselmar</span> (i) categorizes the predictions for unlabeled data based on the confidence level in predictions using fixed and adaptive threshold settings, (ii) applies a label verification procedure for the samples with the ambiguous prediction, and (iii) retrains the model iteratively using samples with their high-confidence predictions or manual annotations. We also designed a software tool to guide domain experts in verifying ambiguous predictions. We applied <span>aselmar</span> to recognize eight selected activities from our trauma resuscitation video dataset and evaluated their performance based on the label verification time and the mean <span>ap</span> score metric. The label verification required by <span>aselmar</span> was 12.1% of the manual annotation effort for the unlabeled video records. The improvement in the mean <span>ap</span> score was 5.7% for the first iteration and 8.3% for the second iteration with the fixed threshold-based method compared to the baseline model. The p-values were below 0.05 for the target activities. Using an adaptive-threshold method, <span>aselmar</span> achieved a decrease in <span>ap</span> score deviation, implying an improvement in model robustness. For a speech-based case study, the word error rate decreased by 6.2%, and the average transcription factor increased 2.6 times, supporting the broad applicability of ASELMAR in reducing labeling efforts from domain experts.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"251 ","pages":"Article 104269"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003503","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Manual annotation of unlabeled data for model training is expensive and time-consuming, especially for visual datasets requiring domain-specific experience for multi-labeling, such as video records generated in hospital settings. There is a need to build frameworks to reduce human labeling efforts while improving training performance. Semi-supervised learning is widely used to generate predictions for unlabeled samples in a partially labeled datasets. Active learning can be used with semi-supervised learning to annotate unlabeled samples to reduce the sampling bias due to the label predictions. We developed the aselmar framework based on active and semi-supervised learning techniques to reduce the time and effort associated with multi-labeling of unlabeled samples for activity recognition. aselmar (i) categorizes the predictions for unlabeled data based on the confidence level in predictions using fixed and adaptive threshold settings, (ii) applies a label verification procedure for the samples with the ambiguous prediction, and (iii) retrains the model iteratively using samples with their high-confidence predictions or manual annotations. We also designed a software tool to guide domain experts in verifying ambiguous predictions. We applied aselmar to recognize eight selected activities from our trauma resuscitation video dataset and evaluated their performance based on the label verification time and the mean ap score metric. The label verification required by aselmar was 12.1% of the manual annotation effort for the unlabeled video records. The improvement in the mean ap score was 5.7% for the first iteration and 8.3% for the second iteration with the fixed threshold-based method compared to the baseline model. The p-values were below 0.05 for the target activities. Using an adaptive-threshold method, aselmar achieved a decrease in ap score deviation, implying an improvement in model robustness. For a speech-based case study, the word error rate decreased by 6.2%, and the average transcription factor increased 2.6 times, supporting the broad applicability of ASELMAR in reducing labeling efforts from domain experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Monocular per-object distance estimation with Masked Object Modeling Editorial Board Corrigendum to “LightSOD: Towards lightweight and efficient network for salient object detection” [J. Comput. Vis. Imag. Underst. 249 (2024) 104148] Guided image filtering-conventional to deep models: A review and evaluation study Learning to mask and permute visual tokens for Vision Transformer pre-training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1