Improved stochastic configuration network for bridge damage and anomaly detection using long-term monitoring data

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2025-01-07 DOI:10.1016/j.ins.2024.121831
Jianxi Yang , Die Liu , Lu Zhao , Xiangli Yang , Ren Li , Shixin Jiang , Jianming Li
{"title":"Improved stochastic configuration network for bridge damage and anomaly detection using long-term monitoring data","authors":"Jianxi Yang ,&nbsp;Die Liu ,&nbsp;Lu Zhao ,&nbsp;Xiangli Yang ,&nbsp;Ren Li ,&nbsp;Shixin Jiang ,&nbsp;Jianming Li","doi":"10.1016/j.ins.2024.121831","DOIUrl":null,"url":null,"abstract":"<div><div>The Stochastic Configuration Network (SCN) is a powerful incremental learning algorithm that dynamically generates network structures during training. However, as a fully connected neural network, it is not adept at capturing the internal dynamic changes of monitoring data and suffers from node redundancy. To address the inadequacy of SCN in handling multi-sensor monitoring data, this paper proposes a feature extraction method called Mean of Positive Values (MPV) to randomly extract the intrinsic features of monitoring data, thereby reconfiguring the original SCN. This improved SCN based on random convolution is named SCN based on Improved Random Convolution (IRC-SCN). Furthermore, to enhance the efficiency of SCN, this study introduces a Random Node Removal based on Importance Ranking (RNR-IR) algorithm. The proposed methods are evaluated on two bridge monitoring datasets for damage identification and anomaly detection, demonstrating their effectiveness. The model based on MPV achieves an accuracy increase of approximately 1% compared to the comparative methods on the test set. Unlike traditional node deletion algorithms, RNR-IR can improve the performance of model by approximately 2% with the removal of around 10% of neurons.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"700 ","pages":"Article 121831"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524017456","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Stochastic Configuration Network (SCN) is a powerful incremental learning algorithm that dynamically generates network structures during training. However, as a fully connected neural network, it is not adept at capturing the internal dynamic changes of monitoring data and suffers from node redundancy. To address the inadequacy of SCN in handling multi-sensor monitoring data, this paper proposes a feature extraction method called Mean of Positive Values (MPV) to randomly extract the intrinsic features of monitoring data, thereby reconfiguring the original SCN. This improved SCN based on random convolution is named SCN based on Improved Random Convolution (IRC-SCN). Furthermore, to enhance the efficiency of SCN, this study introduces a Random Node Removal based on Importance Ranking (RNR-IR) algorithm. The proposed methods are evaluated on two bridge monitoring datasets for damage identification and anomaly detection, demonstrating their effectiveness. The model based on MPV achieves an accuracy increase of approximately 1% compared to the comparative methods on the test set. Unlike traditional node deletion algorithms, RNR-IR can improve the performance of model by approximately 2% with the removal of around 10% of neurons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board GRANA: Graph convolutional network based network representation learning method for attributed network alignment Ensuring privacy and correlation awareness in multi-dimensional service quality prediction and recommendation for IoT EVA: Key values eclosion with space anchor used in hand pose estimation and shape reconstruction Polynomial-time verification of pattern diagnosability for timed discrete event systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1