Zitong Wang , Qilin Li , Wensu Chen , Hong Hao , Ling Li
{"title":"A probability-based risk assessment of secondary fragments ejected from the reinforced concrete wall under close-in explosions","authors":"Zitong Wang , Qilin Li , Wensu Chen , Hong Hao , Ling Li","doi":"10.1016/j.strusafe.2024.102565","DOIUrl":null,"url":null,"abstract":"<div><div>Improvised explosive device (IED) poses a significant threat due to its simplicity of fabrication and deployment. For reinforced concrete (RC) walls, the close-in IED explosions could cause severe structural damage, and the resultant high-velocity secondary fragments endanger people and facilities in the surrounding area. Existing safety standards regarding safety distance are not applicable for close-in IED explosions. This study proposes a probability-based risk assessment method to estimate human casualty risks from secondary fragment ejection caused by close-in IED explosions. This method leverages data from a machine-learning-based Fragment Graph Network (FGN) developed in the authors’ previous research, simulating secondary fragments more efficiently than traditional methods. By analysing fragment distribution data and applying logistic regression analysis, safety distances to avoid human casualties corresponding to various safety probability thresholds are determined. Consequently, the proposed systematic risk assessment method for secondary fragments enables precise determination of safety distances to mitigate potential injuries in close-in IED blast scenarios. Empirical formulae are developed for fast estimation of safety distances required for different blast scenarios and wall configurations.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"114 ","pages":"Article 102565"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016747302400136X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Improvised explosive device (IED) poses a significant threat due to its simplicity of fabrication and deployment. For reinforced concrete (RC) walls, the close-in IED explosions could cause severe structural damage, and the resultant high-velocity secondary fragments endanger people and facilities in the surrounding area. Existing safety standards regarding safety distance are not applicable for close-in IED explosions. This study proposes a probability-based risk assessment method to estimate human casualty risks from secondary fragment ejection caused by close-in IED explosions. This method leverages data from a machine-learning-based Fragment Graph Network (FGN) developed in the authors’ previous research, simulating secondary fragments more efficiently than traditional methods. By analysing fragment distribution data and applying logistic regression analysis, safety distances to avoid human casualties corresponding to various safety probability thresholds are determined. Consequently, the proposed systematic risk assessment method for secondary fragments enables precise determination of safety distances to mitigate potential injuries in close-in IED blast scenarios. Empirical formulae are developed for fast estimation of safety distances required for different blast scenarios and wall configurations.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment