Predicting sorption isotherms from thermodynamic calculations

Keshav Bharadwaj , O. Burkan Isgor , W. Jason Weiss
{"title":"Predicting sorption isotherms from thermodynamic calculations","authors":"Keshav Bharadwaj ,&nbsp;O. Burkan Isgor ,&nbsp;W. Jason Weiss","doi":"10.1016/j.cement.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate sorption/desorption isotherms for cementitious materials are important in predicting drying shrinkage, moisture transport, ionic transport, freezable water content, and the service life of concrete. This paper develops a framework for constructing water sorption isotherms for hydrated cementitious pastes from the outputs of thermodynamic modeling and a pore partitioning model (PPM). Thermodynamic modeling helps quantify the solid phases and pore space in the hydrated matrix. The PPM provides the volume of evaporable water in crystalline hydrates, the total volume of gel water, the volume of capillary water, and volume of pores due to chemical shrinkage. The sorption isotherm is constructed from information on the evaporable water present in individual phases at each RH, water adsorbed on C-S-H, water in pores with kelvin radius of 2–5 nm, capillary water, and water in pores due to chemical shrinkage and air voids. The Brunauer-Skalny-Bodor (BSB) model is used to calculate the water adsorbed on the C-S-H. This model predicts the sorption isotherms from the literature to within an error of 2–19 %. The areas for future work and the challenges in predicting the desorption isotherms are discussed.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549225000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate sorption/desorption isotherms for cementitious materials are important in predicting drying shrinkage, moisture transport, ionic transport, freezable water content, and the service life of concrete. This paper develops a framework for constructing water sorption isotherms for hydrated cementitious pastes from the outputs of thermodynamic modeling and a pore partitioning model (PPM). Thermodynamic modeling helps quantify the solid phases and pore space in the hydrated matrix. The PPM provides the volume of evaporable water in crystalline hydrates, the total volume of gel water, the volume of capillary water, and volume of pores due to chemical shrinkage. The sorption isotherm is constructed from information on the evaporable water present in individual phases at each RH, water adsorbed on C-S-H, water in pores with kelvin radius of 2–5 nm, capillary water, and water in pores due to chemical shrinkage and air voids. The Brunauer-Skalny-Bodor (BSB) model is used to calculate the water adsorbed on the C-S-H. This model predicts the sorption isotherms from the literature to within an error of 2–19 %. The areas for future work and the challenges in predicting the desorption isotherms are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physicochemical kinetics of rapid soil stabilization using calcium sulfoaluminate-based cements Assessing the reliability of laboratory test procedures for predicting concrete field performance against alkali-aggregate reaction (AAR) Optimization of microprobe analysis of cementitious materials incorporating glass powder under electron beam to avoid alkali migration Predicting sorption isotherms from thermodynamic calculations Chemical transformations during the preparation and rehydration of reactivated virgin cements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1