Synergistic effects of silica fume, nanomaterials and inorganic salts on the hydration and compressive strength of low-density oil well cement slurry

Kenedy Geofrey Fikeni , Xueyu Pang , Yukun Zhao , Shenglai Guo , Jie Ren , Kaihe Lv , Jinsheng Sun
{"title":"Synergistic effects of silica fume, nanomaterials and inorganic salts on the hydration and compressive strength of low-density oil well cement slurry","authors":"Kenedy Geofrey Fikeni ,&nbsp;Xueyu Pang ,&nbsp;Yukun Zhao ,&nbsp;Shenglai Guo ,&nbsp;Jie Ren ,&nbsp;Kaihe Lv ,&nbsp;Jinsheng Sun","doi":"10.1016/j.cement.2024.100125","DOIUrl":null,"url":null,"abstract":"<div><div>During offshore cementing at shallow depth, the low-temperature environment at the bottom of the sea and the low-density requirement of the cement slurry significantly hinder the strength development of oil well cement systems. Hence there is always a strong need to take various measures to enhance the strength development of low-density oil well cement systems. During this study, potential synergistic effects of silica fume, nanomaterials (C-S-H nano-seeds, nano-silica, nano-alumina), and inorganic salts (CaCl<sub>2</sub>, NaCl, Na<sub>2</sub>SiO<sub>3</sub>) to improve the strength of low-density well cement slurry were investigated. Water-to-cement ratio (w/c) was varied between 1.04 and 1.28 to obtain a constant slurry density of 1.5 g/cm<sup>3</sup>. Test results revealed that the addition of silica fume altered the rheology and flow behavior of low-density cement slurries, resulting in flat rheology profiles at high shear rates. The Bingham plastic model can describe the rheological behavior of cement slurries without silica fume, whereas the Power-law model is more suitable to cement slurries with silica fume. High-dosage silica fume (30 %) is shown to have similar acceleration capability as the strongest nanomaterial accelerator (i.e. C-S-H nano-seeds) at 2 % dosage. However, adding nanomaterials to silica-fume-enriched slurries cannot further increase the hydration rate of cement (i.e. no synergistic effect), possibly due to their similar acceleration mechanism. In contrast, adding chloride-based inorganic salts to silica-fume-enriched slurries further increased the hydration rate of cement significantly, exhibiting a strong synergistic effect. Based on the 7-day compressive strength test results at 15°C, the addition of silica fume or nanomaterials individually can increase the strength of neat cement by up to 92 %, while the combined addition of silica fume and NaCl can increase its strength by 306 %.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549224000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During offshore cementing at shallow depth, the low-temperature environment at the bottom of the sea and the low-density requirement of the cement slurry significantly hinder the strength development of oil well cement systems. Hence there is always a strong need to take various measures to enhance the strength development of low-density oil well cement systems. During this study, potential synergistic effects of silica fume, nanomaterials (C-S-H nano-seeds, nano-silica, nano-alumina), and inorganic salts (CaCl2, NaCl, Na2SiO3) to improve the strength of low-density well cement slurry were investigated. Water-to-cement ratio (w/c) was varied between 1.04 and 1.28 to obtain a constant slurry density of 1.5 g/cm3. Test results revealed that the addition of silica fume altered the rheology and flow behavior of low-density cement slurries, resulting in flat rheology profiles at high shear rates. The Bingham plastic model can describe the rheological behavior of cement slurries without silica fume, whereas the Power-law model is more suitable to cement slurries with silica fume. High-dosage silica fume (30 %) is shown to have similar acceleration capability as the strongest nanomaterial accelerator (i.e. C-S-H nano-seeds) at 2 % dosage. However, adding nanomaterials to silica-fume-enriched slurries cannot further increase the hydration rate of cement (i.e. no synergistic effect), possibly due to their similar acceleration mechanism. In contrast, adding chloride-based inorganic salts to silica-fume-enriched slurries further increased the hydration rate of cement significantly, exhibiting a strong synergistic effect. Based on the 7-day compressive strength test results at 15°C, the addition of silica fume or nanomaterials individually can increase the strength of neat cement by up to 92 %, while the combined addition of silica fume and NaCl can increase its strength by 306 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization characteristics of cemented lateritic soil produced with selected cement types Significance of fineness of pozzolans in determining pozzolanic reactivity Shaping a sustainable path: Exploring opportunities and challenges in carbon capture and utilization in cement and concrete industry Physicochemical kinetics of rapid soil stabilization using calcium sulfoaluminate-based cements Assessing the reliability of laboratory test procedures for predicting concrete field performance against alkali-aggregate reaction (AAR)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1