Sanitary ware waste in eco-friendly Portland blended cement: Potential use as supplementary cementitious material

Vitor Affonso Lopes Silveira, Domingos Sávio de Resende, Augusto Cesar da Silva Bezerra
{"title":"Sanitary ware waste in eco-friendly Portland blended cement: Potential use as supplementary cementitious material","authors":"Vitor Affonso Lopes Silveira,&nbsp;Domingos Sávio de Resende,&nbsp;Augusto Cesar da Silva Bezerra","doi":"10.1016/j.cement.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><div>The sanitary ware industry led to significant waste generation with a long biodegradation period. To produce eco-friendly Portland blended cement, partial Portland cement (PC) substitution is proposed, reducing clinker consumption and mitigating adverse environmental impacts. This paper assessed the pozzolanic activity and the filler effect of clay-based sanitary ware waste (CSW) to study its feasibility of reutilization as a supplementary cementitious material (SCM). After being collected, the samples underwent a preparation process consisting of drying and sieving. The waste replaced 0 to 25 wt% PC. The CSW powder was characterized by laser diffraction granulometry, X-ray diffraction (XRD), X-ray fluorescence, and scanning electron microscopy (SEM). The pozzolanic activity was assessed by compressive strength test, isothermal calorimetry, and electrical conductivity. Durability was considered by acid attack, and the hardened mortar proprieties were shown. The utilization of CSW blended with PC is feasible for producing eco-friendly binders.</div></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"19 ","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549224000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sanitary ware industry led to significant waste generation with a long biodegradation period. To produce eco-friendly Portland blended cement, partial Portland cement (PC) substitution is proposed, reducing clinker consumption and mitigating adverse environmental impacts. This paper assessed the pozzolanic activity and the filler effect of clay-based sanitary ware waste (CSW) to study its feasibility of reutilization as a supplementary cementitious material (SCM). After being collected, the samples underwent a preparation process consisting of drying and sieving. The waste replaced 0 to 25 wt% PC. The CSW powder was characterized by laser diffraction granulometry, X-ray diffraction (XRD), X-ray fluorescence, and scanning electron microscopy (SEM). The pozzolanic activity was assessed by compressive strength test, isothermal calorimetry, and electrical conductivity. Durability was considered by acid attack, and the hardened mortar proprieties were shown. The utilization of CSW blended with PC is feasible for producing eco-friendly binders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization characteristics of cemented lateritic soil produced with selected cement types Significance of fineness of pozzolans in determining pozzolanic reactivity Shaping a sustainable path: Exploring opportunities and challenges in carbon capture and utilization in cement and concrete industry Physicochemical kinetics of rapid soil stabilization using calcium sulfoaluminate-based cements Assessing the reliability of laboratory test procedures for predicting concrete field performance against alkali-aggregate reaction (AAR)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1