Ping Lu , Liwei Zheng , Junpeng Lin , Zhongqi Cai , Bin Dai , Kaibiao Lin , Fan Yang
{"title":"MSMDL-DDI: Multi-Layer Soft Mask Dual-View Learning for Drug–Drug Interactions","authors":"Ping Lu , Liwei Zheng , Junpeng Lin , Zhongqi Cai , Bin Dai , Kaibiao Lin , Fan Yang","doi":"10.1016/j.compbiolchem.2025.108355","DOIUrl":null,"url":null,"abstract":"<div><div>Drug–drug interactions (DDIs) occur when multiple medications are co-administered, potentially leading to adverse effects and compromising patient safety. However, existing DDI prediction methods often overlook the intricate interactions among chemical substructures within drugs, resulting in incomplete characterization of molecular properties. To address this limitation, we propose a novel model named <strong>M</strong>ulti-Layer <strong>S</strong>oft <strong>M</strong>ask <strong>D</strong>ual-View <strong>L</strong>earning for <strong>D</strong>rug-<strong>D</strong>rug <strong>I</strong>nteractions (MSMDL-DDI), which integrates dual-view learning with multi-layer soft mask graph neural networks to comprehensively capture intra- and inter-molecular interactions. Specifically, our model first employs a multi-layer soft-masked graph neural network to extract key substructures from drug molecule graphs. Subsequently, our model implements a novel dual-view learning strategy to capture intra- and inter-molecular interactions resulting in enriched drug pair representations. Finally, the model predicts the likelihood of DDIs by utilizing a decoder to compute the shared attention scores of these enhanced representations. In addition, experimental results on three real-world datasets show that MSMDL-DDI outperforms nine state-of-the-art methods in both transductive and inductive DDI prediction tasks. Notably, the model achieves an accuracy of 0.9647 on the Twosides dataset for the transductive task, marking a 10.2% improvement over the second-best-performing method.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108355"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000155","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug–drug interactions (DDIs) occur when multiple medications are co-administered, potentially leading to adverse effects and compromising patient safety. However, existing DDI prediction methods often overlook the intricate interactions among chemical substructures within drugs, resulting in incomplete characterization of molecular properties. To address this limitation, we propose a novel model named Multi-Layer Soft Mask Dual-View Learning for Drug-Drug Interactions (MSMDL-DDI), which integrates dual-view learning with multi-layer soft mask graph neural networks to comprehensively capture intra- and inter-molecular interactions. Specifically, our model first employs a multi-layer soft-masked graph neural network to extract key substructures from drug molecule graphs. Subsequently, our model implements a novel dual-view learning strategy to capture intra- and inter-molecular interactions resulting in enriched drug pair representations. Finally, the model predicts the likelihood of DDIs by utilizing a decoder to compute the shared attention scores of these enhanced representations. In addition, experimental results on three real-world datasets show that MSMDL-DDI outperforms nine state-of-the-art methods in both transductive and inductive DDI prediction tasks. Notably, the model achieves an accuracy of 0.9647 on the Twosides dataset for the transductive task, marking a 10.2% improvement over the second-best-performing method.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.