Global information enhanced adaptive bald eagle search algorithm for photovoltaic system optimization

IF 4.7 3区 工程技术 Q2 ENERGY & FUELS Energy Reports Pub Date : 2025-01-31 DOI:10.1016/j.egyr.2025.01.040
Wenyan Guo, Zhuolin Hou, Fang Dai, Junfeng Wang, Shenglong Li
{"title":"Global information enhanced adaptive bald eagle search algorithm for photovoltaic system optimization","authors":"Wenyan Guo,&nbsp;Zhuolin Hou,&nbsp;Fang Dai,&nbsp;Junfeng Wang,&nbsp;Shenglong Li","doi":"10.1016/j.egyr.2025.01.040","DOIUrl":null,"url":null,"abstract":"<div><div>The parameter estimation of solar photovoltaic system (SPVS) models presents a formidable optimization challenge. The crux of resolving this issue lies in the efficacy of intelligent algorithms. By addressing the parameter optimization challenges associated with three photovoltaic models and targeting the deficiencies of the bald eagle search optimization algorithm (BES), such as its limited local search capability, inadequate diversity, and suboptimal solution performance, this article introduces a novel approach: the virtual-particle adaptive bald eagle search optimization algorithm (VABES). Incorporated into VABES is a virtual particle updating mechanism, leveraging comprehensive population information to enhance the prospects of individuals converging towards the most desired solution, while simultaneously preventing the population from becoming trapped at extreme points. To strike a balance between aggregation and dispersion within the swarm and bolster VABES's global optimization prowess, an adaptive probability-guided Levy flight correction scheme has been devised. Additionally, a dynamic mutation factor-based mutation and crossover strategy has been formulated to refine VABES's exploitation capabilities. The results of 100-dimensional tests conducted on 40 benchmark functions from CEC2017 and CEC2020, coupled with nonparametric testing, reveal that VABES outperforms at least 66 % of other competitive improved algorithms. Experiments involving 57 real-world problems demonstrate that VABES's total performance metric stands at 0.1466, ranking it first and showcasing its notable advantages in handling constrained optimization compared to BES-related improved algorithms. Furthermore, the solution processes for three photovoltaic parameter optimization models illustrate that VABES converges rapidly, reducing errors by 26 %, and exhibits certain advantages in estimating diverse photovoltaic model parameters.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"13 ","pages":"Pages 2129-2152"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725000423","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The parameter estimation of solar photovoltaic system (SPVS) models presents a formidable optimization challenge. The crux of resolving this issue lies in the efficacy of intelligent algorithms. By addressing the parameter optimization challenges associated with three photovoltaic models and targeting the deficiencies of the bald eagle search optimization algorithm (BES), such as its limited local search capability, inadequate diversity, and suboptimal solution performance, this article introduces a novel approach: the virtual-particle adaptive bald eagle search optimization algorithm (VABES). Incorporated into VABES is a virtual particle updating mechanism, leveraging comprehensive population information to enhance the prospects of individuals converging towards the most desired solution, while simultaneously preventing the population from becoming trapped at extreme points. To strike a balance between aggregation and dispersion within the swarm and bolster VABES's global optimization prowess, an adaptive probability-guided Levy flight correction scheme has been devised. Additionally, a dynamic mutation factor-based mutation and crossover strategy has been formulated to refine VABES's exploitation capabilities. The results of 100-dimensional tests conducted on 40 benchmark functions from CEC2017 and CEC2020, coupled with nonparametric testing, reveal that VABES outperforms at least 66 % of other competitive improved algorithms. Experiments involving 57 real-world problems demonstrate that VABES's total performance metric stands at 0.1466, ranking it first and showcasing its notable advantages in handling constrained optimization compared to BES-related improved algorithms. Furthermore, the solution processes for three photovoltaic parameter optimization models illustrate that VABES converges rapidly, reducing errors by 26 %, and exhibits certain advantages in estimating diverse photovoltaic model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Reports
Energy Reports Energy-General Energy
CiteScore
8.20
自引率
13.50%
发文量
2608
审稿时长
38 days
期刊介绍: Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.
期刊最新文献
Methane and carbon dioxide post-combustion capturing: A step towards low carbon aviation fuel Evaluation of the short and medium-term forecast quality of global solar irradiance from GFS-MOS and WRF-Solar models for the northeast region of Brazil Spray cooling for enhancing cooling performance and reducing power consumption of radiator in hydrogen fuel cell system State of charge estimation for lithium-ion batteries based on a digital twin hybrid model Feedback action and genetic algorithm-based proportional-integral controller to improve the performance of the direct power control of a variable-speed contra-rotating wind turbine generation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1