Performance and electrochemical asymmetry optimization of hydrogen electrode supported reversible solid oxide cell

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2025-01-01 DOI:10.3866/PKU.WHXB202309037
Qianwen Han, Tenglong Zhu, Qiuqiu Lyu, Mahong Yu, Qin Zhong
{"title":"Performance and electrochemical asymmetry optimization of hydrogen electrode supported reversible solid oxide cell","authors":"Qianwen Han,&nbsp;Tenglong Zhu,&nbsp;Qiuqiu Lyu,&nbsp;Mahong Yu,&nbsp;Qin Zhong","doi":"10.3866/PKU.WHXB202309037","DOIUrl":null,"url":null,"abstract":"<div><div>Solid oxide cell (SOC) is a typical multi-layer thin film ceramic device consisting of oxygen electrodes, electrolytes, and hydrogen electrodes. The currently widely used structure is a single cell supported by a Ni-YSZ (Nickel-Yttria Stabilized Zirconia) hydrogen electrode, with YSZ (Yttria Stabilized Zirconia) serving as the electrolyte. This configuration achieves electrolyte filmization, while also reducing the operating temperature of the cell. However, it introduces significant diffusion resistance within the hydrogen electrode, which is considered the main reason for the electrochemical asymmetry in reversible solid oxide cell (R–SOC). This study prepared hydrogen electrodes with varying porosity and investigated the impact of diffusion resistance of hydrogen electrodes on R–SOC asymmetry. On this basis, <em>in-situ</em> hydrothermal growth technology was employed to prepare ultra-thin and dense GDC (Gd<sub>2</sub>O<sub>3</sub> doped CeO<sub>2</sub>) barrier layers, compared with conventional screen-printed barrier layers to explore the effect of electrolyte ohmic resistance on electrochemical asymmetry. Experimental findings revealed that the electrolyte ohmic resistance is also a significant factor affecting the electrochemical asymmetry of reversible SOC, and the synergistic mechanism of the diffusion resistance of hydrogen electrodes and the ohmic resistance of thin film electrolytes on this asymmetry was elucidated. The experimental results show that increasing the hydrogen electrode porosity and reducing the electrolyte ohmic resistance can both enhance the R–SOC performance, particularly improving SOEC electrolysis performance, and both have the effect of reducing asymmetry. At 750 °C, 50 % H<sub>2</sub>O, and ±0.3 V bias conditions, the single cell with a large-pore hydrogen electrode and a thin film barrier layer exhibited a discharge current density of 0.752 A cm<sup>−2</sup> and an electrolysis current density of 0.635 A cm<sup>−2</sup>. Compared to the single cell with a small pore hydrogen electrode and an ordinary screen-printed barrier layer, the discharge and electrolysis performance of the cell have been improved by ∼37 % and ∼140 %, respectively. At the same time, the current density asymmetry of the cell (Δ<em>j</em>) under these conditions was only 0.117 A cm<sup>−2</sup>, reduced by 58 % compared to a small porosity hydrogen electrode single cell and 24 % compared to a large ohmic resistance single cell. In addition, the study noted that R–SOC asymmetry increases with operating temperature and decreases with higher steam content in the fuel on the hydrogen electrode side. These findings hold significant reference value the design, preparation, and reversible operation of high-performance hydrogen electrode supported thin film electrolyte SOC single cell structures.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 1","pages":"Article 100005"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000055","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid oxide cell (SOC) is a typical multi-layer thin film ceramic device consisting of oxygen electrodes, electrolytes, and hydrogen electrodes. The currently widely used structure is a single cell supported by a Ni-YSZ (Nickel-Yttria Stabilized Zirconia) hydrogen electrode, with YSZ (Yttria Stabilized Zirconia) serving as the electrolyte. This configuration achieves electrolyte filmization, while also reducing the operating temperature of the cell. However, it introduces significant diffusion resistance within the hydrogen electrode, which is considered the main reason for the electrochemical asymmetry in reversible solid oxide cell (R–SOC). This study prepared hydrogen electrodes with varying porosity and investigated the impact of diffusion resistance of hydrogen electrodes on R–SOC asymmetry. On this basis, in-situ hydrothermal growth technology was employed to prepare ultra-thin and dense GDC (Gd2O3 doped CeO2) barrier layers, compared with conventional screen-printed barrier layers to explore the effect of electrolyte ohmic resistance on electrochemical asymmetry. Experimental findings revealed that the electrolyte ohmic resistance is also a significant factor affecting the electrochemical asymmetry of reversible SOC, and the synergistic mechanism of the diffusion resistance of hydrogen electrodes and the ohmic resistance of thin film electrolytes on this asymmetry was elucidated. The experimental results show that increasing the hydrogen electrode porosity and reducing the electrolyte ohmic resistance can both enhance the R–SOC performance, particularly improving SOEC electrolysis performance, and both have the effect of reducing asymmetry. At 750 °C, 50 % H2O, and ±0.3 V bias conditions, the single cell with a large-pore hydrogen electrode and a thin film barrier layer exhibited a discharge current density of 0.752 A cm−2 and an electrolysis current density of 0.635 A cm−2. Compared to the single cell with a small pore hydrogen electrode and an ordinary screen-printed barrier layer, the discharge and electrolysis performance of the cell have been improved by ∼37 % and ∼140 %, respectively. At the same time, the current density asymmetry of the cell (Δj) under these conditions was only 0.117 A cm−2, reduced by 58 % compared to a small porosity hydrogen electrode single cell and 24 % compared to a large ohmic resistance single cell. In addition, the study noted that R–SOC asymmetry increases with operating temperature and decreases with higher steam content in the fuel on the hydrogen electrode side. These findings hold significant reference value the design, preparation, and reversible operation of high-performance hydrogen electrode supported thin film electrolyte SOC single cell structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar–driven antibiotics photodegradation Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity Efficient capacitive desalination over NCQDs decorated FeOOH composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1