Microstructure and mechanical properties of 2D laminated C/C-SiC composites prepared by low-temperature reactive melt infiltration with silicon alloy

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of The European Ceramic Society Pub Date : 2025-01-15 DOI:10.1016/j.jeurceramsoc.2025.117217
Qianhui Qin , Yangjie Han , Yuke Zeng , Meixia Cai , Song Li , Zhichao Xiao , Hongyan Xia , Jiping Wang
{"title":"Microstructure and mechanical properties of 2D laminated C/C-SiC composites prepared by low-temperature reactive melt infiltration with silicon alloy","authors":"Qianhui Qin ,&nbsp;Yangjie Han ,&nbsp;Yuke Zeng ,&nbsp;Meixia Cai ,&nbsp;Song Li ,&nbsp;Zhichao Xiao ,&nbsp;Hongyan Xia ,&nbsp;Jiping Wang","doi":"10.1016/j.jeurceramsoc.2025.117217","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a cost-effective and time-efficient method for preparing C/C-SiC composites using low-temperature RMI with Si-33Ni and Si-14Ti alloys, addressing the high reactivity of pure Si. Carbon fiber plain cloth was surface treated, impregnated with phenolic resin, laminated with hot pressing, and carbonized to form C/C composites, which were then infiltrated with Si-Ni and Si-Ti alloys at 1390°C to 1550°C. The results show that the C/C-SiC composites prepared at 1390°C using Si-Ni alloy and at 1550°C using Si-Ti alloy exhibit superior mechanical properties, with flexural strengths of 230 MPa and 221 MPa, and fracture toughnesses of 5.12 MPa·m<sup>1/2</sup> and 4.89 MPa·m<sup>1/2</sup>, respectively—surpassing those prepared with pure Si. Because of the brittle Si were replaced by related alloy phase and few damages to fibers during RMI. These findings provide insights into the low-temperature RMI process and pave the way for developing next-generation lightweight, high-strength composite materials.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 6","pages":"Article 117217"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925000378","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a cost-effective and time-efficient method for preparing C/C-SiC composites using low-temperature RMI with Si-33Ni and Si-14Ti alloys, addressing the high reactivity of pure Si. Carbon fiber plain cloth was surface treated, impregnated with phenolic resin, laminated with hot pressing, and carbonized to form C/C composites, which were then infiltrated with Si-Ni and Si-Ti alloys at 1390°C to 1550°C. The results show that the C/C-SiC composites prepared at 1390°C using Si-Ni alloy and at 1550°C using Si-Ti alloy exhibit superior mechanical properties, with flexural strengths of 230 MPa and 221 MPa, and fracture toughnesses of 5.12 MPa·m1/2 and 4.89 MPa·m1/2, respectively—surpassing those prepared with pure Si. Because of the brittle Si were replaced by related alloy phase and few damages to fibers during RMI. These findings provide insights into the low-temperature RMI process and pave the way for developing next-generation lightweight, high-strength composite materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
期刊最新文献
Multi-mechanism cooperative optimization of electromagnetic shielding and mechanical properties in Cf/PyC/SiC-SiCN(Fe) ceramic-based composites Oxidation resistance and protective mechanism of ZrB2-SiC coating modified by Y2O3 at 1700 ℃ Controllable morphology genetic composites of porous SiC/Ti3SiC2 synthesized via template assembly strategy for tunable microwave absorption performance Enhancement of thermoelectric properties of electropositive and electronegative element double-filled CoSb3 via high-pressure regulating Piezoelectric performances of <001> -textured (Ag,K)NbO3 ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1