Wenxia Zhu, Xiaohui Xia, Yukun Zheng, Huiming Ji, Dong Su
{"title":"Tailoring of carbon structure in lightweight GNS/SiBCN nanocomposites for enhanced electromagnetic interference shielding performance","authors":"Wenxia Zhu, Xiaohui Xia, Yukun Zheng, Huiming Ji, Dong Su","doi":"10.1016/j.jeurceramsoc.2024.117180","DOIUrl":null,"url":null,"abstract":"<div><div>Precursor derived SiBCN ceramic is considered as promising materials for advanced electromagnetic interference (EMI) shielding. Here, the graphene nanosheet (GNS) aerogel via high-temperature graphitization was used as conductive network for constructing GNS/SiBCN nanocomposites through polyborosilazane (PBSZ) precursor infiltration and pyrolysis. The graphitization process of GNS aerogels increases the electrical conductivity of GNS/SiBCN nanocomposites from 105 to 1168 S·m<sup>−1</sup>, and achieves an improved EMI shielding effectiveness (SE<sub>Total</sub>) from 24.1 to 39.3 dB. The SiBCN protection endows the nanocomposite with good oxidation resistance at 800 °C in air and high-temperature stability at 1400 °C in Ar. Moreover, the porous GNS/SiBCN nanocomposite with density of 0.11 g·cm<sup>−3</sup> was attained by adjusting the PBSZ content of 10 % during the infiltration, further exhibiting a high SE<sub>Total</sub> of 32.7 dB and a high specific SE<sub>Total</sub> of 297 dB·g<sup>−1</sup>·cm<sup>3</sup>. Therefore, it’s an ideal route to develop lightweight EMI shielding materials used in high-temperature environment.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 6","pages":"Article 117180"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924010537","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Precursor derived SiBCN ceramic is considered as promising materials for advanced electromagnetic interference (EMI) shielding. Here, the graphene nanosheet (GNS) aerogel via high-temperature graphitization was used as conductive network for constructing GNS/SiBCN nanocomposites through polyborosilazane (PBSZ) precursor infiltration and pyrolysis. The graphitization process of GNS aerogels increases the electrical conductivity of GNS/SiBCN nanocomposites from 105 to 1168 S·m−1, and achieves an improved EMI shielding effectiveness (SETotal) from 24.1 to 39.3 dB. The SiBCN protection endows the nanocomposite with good oxidation resistance at 800 °C in air and high-temperature stability at 1400 °C in Ar. Moreover, the porous GNS/SiBCN nanocomposite with density of 0.11 g·cm−3 was attained by adjusting the PBSZ content of 10 % during the infiltration, further exhibiting a high SETotal of 32.7 dB and a high specific SETotal of 297 dB·g−1·cm3. Therefore, it’s an ideal route to develop lightweight EMI shielding materials used in high-temperature environment.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.