Yuehui Li , Yin Du , Xuhui Pei , Tao Li , Hongxing Wu , Wei Zhou , Haifeng Wang , Weimin Liu
{"title":"High-temperature tribological behavior and mechanisms of a high entropy carbide ceramic","authors":"Yuehui Li , Yin Du , Xuhui Pei , Tao Li , Hongxing Wu , Wei Zhou , Haifeng Wang , Weimin Liu","doi":"10.1016/j.jeurceramsoc.2024.117170","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramic materials based on the concept of \"high-entropy\" have demonstrated superior comprehensive properties compared to their individual components, thus becoming a prominent research focus. Here, a (TiZrVNb)C high-entropy carbide ceramic (HECC) was successfully synthesized through spark plasma sintering, and the impact of high-entropy characteristics on tribological behavior from room temperature to 900 °C was studied. Results show that the HECC exhibits enhanced mechanical properties and superior wear resistance across a wide temperature range in comparison to ZrC. The solution strengthening and lattice distortion effects in the HECC not only enhance hardness and fracture toughness, but also confer exceptional wear resistance. Additionally, the high entropy effect brought by the HECC's multi-component significantly enhances its oxidation performance at high temperatures, and enables the oxide layer to effectively play the role of friction and wear barrier.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 6","pages":"Article 117170"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924010434","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ceramic materials based on the concept of "high-entropy" have demonstrated superior comprehensive properties compared to their individual components, thus becoming a prominent research focus. Here, a (TiZrVNb)C high-entropy carbide ceramic (HECC) was successfully synthesized through spark plasma sintering, and the impact of high-entropy characteristics on tribological behavior from room temperature to 900 °C was studied. Results show that the HECC exhibits enhanced mechanical properties and superior wear resistance across a wide temperature range in comparison to ZrC. The solution strengthening and lattice distortion effects in the HECC not only enhance hardness and fracture toughness, but also confer exceptional wear resistance. Additionally, the high entropy effect brought by the HECC's multi-component significantly enhances its oxidation performance at high temperatures, and enables the oxide layer to effectively play the role of friction and wear barrier.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.