Exploring coupling effects of rainfall and surface roughness on the sheet flow velocity

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES International Soil and Water Conservation Research Pub Date : 2024-09-11 DOI:10.1016/j.iswcr.2024.09.001
Enshuai Shen , Gang Liu , Qiong Zhang , Chenxi Dan , Chang Liu , Hairu Li , Ya Liu , Xueming Qu , Xiaolin Xia , Dandan Liu , Zhen Guo , Xining Zhao
{"title":"Exploring coupling effects of rainfall and surface roughness on the sheet flow velocity","authors":"Enshuai Shen ,&nbsp;Gang Liu ,&nbsp;Qiong Zhang ,&nbsp;Chenxi Dan ,&nbsp;Chang Liu ,&nbsp;Hairu Li ,&nbsp;Ya Liu ,&nbsp;Xueming Qu ,&nbsp;Xiaolin Xia ,&nbsp;Dandan Liu ,&nbsp;Zhen Guo ,&nbsp;Xining Zhao","doi":"10.1016/j.iswcr.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately describing the path of sheet flow (SF) is crucial in soil erosion. Raindrop impact and underlying surface conditions can affect the SF velocity by changing the velocity profile. However, since this information is rarely known, the estimation of SF velocity is inaccurate. A series of upstream inflow and rainfall experiments were carried out on an impermeable flume to determine the coupling effects of rainfall and rough bed surfaces on the SF velocity and correction factor (<em>α</em>). The results showed that the roughness of the bed surface had a more pronounced effect on reducing the mean velocity compared to the surface velocity in both cases with and without raindrop impact. The raindrop impact notably reduced the flow velocity near the water surface, while the mean velocity slightly decreased or remained almost constant with increasing rainfall intensity. The reduction in SF velocity can be explained by the combined effects of the roughness reducing the mean velocity (up to 33.52%) and the raindrop impact reducing the surface velocity (up to 25.43%). In addition, <em>α</em> was not a constant when the SF was subjected to raindrop impact. The rainfall was found to increase <em>α</em>, while the roughness of the bed surface reduced <em>α</em> for all cases. Finally, a model was created to forecast <em>α</em> based on the ratio of water depth to roughness height, hydraulic slope, and rain Reynolds number. The results are valuable in soil erosion by providing accurate <em>α</em> for estimating the surface and mean velocities of SF.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 1","pages":"Pages 164-176"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633924000662","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately describing the path of sheet flow (SF) is crucial in soil erosion. Raindrop impact and underlying surface conditions can affect the SF velocity by changing the velocity profile. However, since this information is rarely known, the estimation of SF velocity is inaccurate. A series of upstream inflow and rainfall experiments were carried out on an impermeable flume to determine the coupling effects of rainfall and rough bed surfaces on the SF velocity and correction factor (α). The results showed that the roughness of the bed surface had a more pronounced effect on reducing the mean velocity compared to the surface velocity in both cases with and without raindrop impact. The raindrop impact notably reduced the flow velocity near the water surface, while the mean velocity slightly decreased or remained almost constant with increasing rainfall intensity. The reduction in SF velocity can be explained by the combined effects of the roughness reducing the mean velocity (up to 33.52%) and the raindrop impact reducing the surface velocity (up to 25.43%). In addition, α was not a constant when the SF was subjected to raindrop impact. The rainfall was found to increase α, while the roughness of the bed surface reduced α for all cases. Finally, a model was created to forecast α based on the ratio of water depth to roughness height, hydraulic slope, and rain Reynolds number. The results are valuable in soil erosion by providing accurate α for estimating the surface and mean velocities of SF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
期刊最新文献
Editorial Board Visible, near-infrared, and shortwave-infrared spectra as an input variable for digital mapping of soil organic carbon Editorial Board Effects of initial soil moisture on rill erodibility and critical shear stress factors in the WEPP model across diverse soil types Maize crop residue cover mapping using Sentinel-2 MSI data and random forest algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1