First-principles calculations to investigate Electronic, half-metallicity, thermodynamics, thermoelectric and mechanical properties of new Half-Heusler alloys FeCoZ (Z = Si, Ge, and Pb)
Maryam Touqir , G. Murtaza , Ahmad Ayyaz , Ahmad Usman , M.Basit Shakir , Saba Saleem , Hummaira khan , Muhammad Umair Ashraf , Khalid M. Elhindi
{"title":"First-principles calculations to investigate Electronic, half-metallicity, thermodynamics, thermoelectric and mechanical properties of new Half-Heusler alloys FeCoZ (Z = Si, Ge, and Pb)","authors":"Maryam Touqir , G. Murtaza , Ahmad Ayyaz , Ahmad Usman , M.Basit Shakir , Saba Saleem , Hummaira khan , Muhammad Umair Ashraf , Khalid M. Elhindi","doi":"10.1016/j.comptc.2025.115066","DOIUrl":null,"url":null,"abstract":"<div><div>FeCoZ compounds (where Z = Si, Ge, or Pb) are essential for spintronics and thermoelectric applications. This study, using density functional theory and PBE-GGA for exchange–correlation, explores their structural, electrical, magnetic, thermoelectric, thermodynamic, and elastic properties. Density of states analysis and spin-polarized band structures indicate that all three compounds have an indirect bandgap in the spin-up (↑) channel and are metallic in the spin-down (↓) channel. The exchange mechanism is finally produced by splitting the degeneracy of Co’s 3d-states via the John-Teller distortion. Ferromagnetic stability in FeCoZ (Z = Si, Ge, or Pb) is shown by negative N<sub>o</sub>α and N<sub>o</sub>β values. Thermoelectric properties are derived using the BoltzTraP method. The increasing PF in alloys indicates their potential use in high-temperature thermoelectric applications. Consequently, the elevated ZT value produced in the spin-up condition indicates that these alloys are suitable for thermoelectric applications, and the quasi-harmonic Debye model indicates thermodynamic stability. Poisson’s ratio, Pugh’s ratio, and Cauchy’s pressure confirm mechanical stability and ductility. Overall, these compounds, suited for spintronic applications, exhibit half-metallicity, ferromagnetism, and high intrinsic magnetic moments.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1244 ","pages":"Article 115066"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25000027","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
FeCoZ compounds (where Z = Si, Ge, or Pb) are essential for spintronics and thermoelectric applications. This study, using density functional theory and PBE-GGA for exchange–correlation, explores their structural, electrical, magnetic, thermoelectric, thermodynamic, and elastic properties. Density of states analysis and spin-polarized band structures indicate that all three compounds have an indirect bandgap in the spin-up (↑) channel and are metallic in the spin-down (↓) channel. The exchange mechanism is finally produced by splitting the degeneracy of Co’s 3d-states via the John-Teller distortion. Ferromagnetic stability in FeCoZ (Z = Si, Ge, or Pb) is shown by negative Noα and Noβ values. Thermoelectric properties are derived using the BoltzTraP method. The increasing PF in alloys indicates their potential use in high-temperature thermoelectric applications. Consequently, the elevated ZT value produced in the spin-up condition indicates that these alloys are suitable for thermoelectric applications, and the quasi-harmonic Debye model indicates thermodynamic stability. Poisson’s ratio, Pugh’s ratio, and Cauchy’s pressure confirm mechanical stability and ductility. Overall, these compounds, suited for spintronic applications, exhibit half-metallicity, ferromagnetism, and high intrinsic magnetic moments.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.