On the effect of different samplings to the solution of parametric PDE eigenvalue problems

Daniele Boffi , Abdul Halim , Gopal Priyadarshi
{"title":"On the effect of different samplings to the solution of parametric PDE eigenvalue problems","authors":"Daniele Boffi ,&nbsp;Abdul Halim ,&nbsp;Gopal Priyadarshi","doi":"10.1016/j.exco.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><div>The use of sparse sampling is a consolidated technique for the reduced order modeling of parametric PDEs. In this note we investigate the choice of sampling points within the framework of reduced order techniques for the approximation of eigenvalue problems originating from parametric PDEs. We use the standard proper orthogonal decomposition technique to obtain the basis of the reduced space and Galerkin orthogonal technique to get the reduced problem. We present some numerical results and observe that, as in the case of the source problem, also for eigenvalue problems the use of sparse sampling is a good idea and that, when the number of sampling points is assigned, sparse sampling provides better results than uniform sampling.</div><div>In the spirit of the journal, we present our results in the form of examples and counterexamples.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100170"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of sparse sampling is a consolidated technique for the reduced order modeling of parametric PDEs. In this note we investigate the choice of sampling points within the framework of reduced order techniques for the approximation of eigenvalue problems originating from parametric PDEs. We use the standard proper orthogonal decomposition technique to obtain the basis of the reduced space and Galerkin orthogonal technique to get the reduced problem. We present some numerical results and observe that, as in the case of the source problem, also for eigenvalue problems the use of sparse sampling is a good idea and that, when the number of sampling points is assigned, sparse sampling provides better results than uniform sampling.
In the spirit of the journal, we present our results in the form of examples and counterexamples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python Counterexamples for your calculus course Hölder’s inequality for shifted quantum integral operator Solving change of basis from Bernstein to Chebyshev polynomials Asymptotic behavior of the empirical checkerboard copula process for binary data: An educational presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1