DBVA: Double-layered blockchain architecture for enhanced security in VANET vehicular authentication

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Communications Pub Date : 2025-01-07 DOI:10.1016/j.comcom.2025.108048
Samuel Akwasi Frimpong , Mu Han , Usman Ahmad , Otu Larbi-Siaw , Joseph Kwame Adjei
{"title":"DBVA: Double-layered blockchain architecture for enhanced security in VANET vehicular authentication","authors":"Samuel Akwasi Frimpong ,&nbsp;Mu Han ,&nbsp;Usman Ahmad ,&nbsp;Otu Larbi-Siaw ,&nbsp;Joseph Kwame Adjei","doi":"10.1016/j.comcom.2025.108048","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicular ad-hoc networks (VANET) are crucial for improving road safety and traffic management in Intelligent Transportation Systems (ITS). However, these networks face significant security and privacy challenges due to their dynamic and decentralized nature. Traditional authentication methods, such as Public Key Infrastructure (PKI) and centralized systems, struggle with scalability, single points of failure, and privacy issues. To address these issues, this paper introduces DBVA, a Double-Layered Blockchain Architecture that integrates private and consortium blockchains to create a robust and scalable authentication framework for VANET. The DBVA framework segregates public transactions, such as traffic data, from private transactions, such as identity and location information, into separate blockchain layers, preserving privacy and enhancing security. Additionally, DBVA introduces strict access control smart contracts for the decentralized revocation of unauthorized vehicle privileges, minimizing communication risks and enhancing system resilience. A dynamic pseudonym identity generation mechanism with periodic updates further strengthens privacy by segregating real and pseudonymous identities into separate blockchain layers. Comprehensive performance evaluations reveal that DBVA significantly enhances computational efficiency, reducing the computational cost to 18.34 ms, lowering communication overhead to 992 bits per message, and minimizing storage requirements to just 50 units, making it competitive among contemporary schemes. Extensive security analysis and formal proof confirm that DBVA effectively meets all essential privacy and security requirements, making it a robust, reliable, and scalable solution for enhancing the security, privacy, and resilience of VANET.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"232 ","pages":"Article 108048"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000052","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular ad-hoc networks (VANET) are crucial for improving road safety and traffic management in Intelligent Transportation Systems (ITS). However, these networks face significant security and privacy challenges due to their dynamic and decentralized nature. Traditional authentication methods, such as Public Key Infrastructure (PKI) and centralized systems, struggle with scalability, single points of failure, and privacy issues. To address these issues, this paper introduces DBVA, a Double-Layered Blockchain Architecture that integrates private and consortium blockchains to create a robust and scalable authentication framework for VANET. The DBVA framework segregates public transactions, such as traffic data, from private transactions, such as identity and location information, into separate blockchain layers, preserving privacy and enhancing security. Additionally, DBVA introduces strict access control smart contracts for the decentralized revocation of unauthorized vehicle privileges, minimizing communication risks and enhancing system resilience. A dynamic pseudonym identity generation mechanism with periodic updates further strengthens privacy by segregating real and pseudonymous identities into separate blockchain layers. Comprehensive performance evaluations reveal that DBVA significantly enhances computational efficiency, reducing the computational cost to 18.34 ms, lowering communication overhead to 992 bits per message, and minimizing storage requirements to just 50 units, making it competitive among contemporary schemes. Extensive security analysis and formal proof confirm that DBVA effectively meets all essential privacy and security requirements, making it a robust, reliable, and scalable solution for enhancing the security, privacy, and resilience of VANET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
期刊最新文献
Editorial Board Secrecy performance optimization for UAV-based relay NOMA systems with friendly jamming DFFL: A dual fairness framework for federated learning Multi-layer guided reinforcement learning task offloading based on Softmax policy in smart cities Incentive mechanisms for non-proprietary vehicles in vehicular crowdsensing with budget constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1