Coupling genome-wide continuous perturbation with biosensor screening reveals the potential targets in yeast isopentanol synthesis network

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2024-12-30 DOI:10.1016/j.synbio.2024.12.010
Qi Xiao , Jingjing Shi , Lixian Wang , Guoping Zhao , Yanfei Zhang
{"title":"Coupling genome-wide continuous perturbation with biosensor screening reveals the potential targets in yeast isopentanol synthesis network","authors":"Qi Xiao ,&nbsp;Jingjing Shi ,&nbsp;Lixian Wang ,&nbsp;Guoping Zhao ,&nbsp;Yanfei Zhang","doi":"10.1016/j.synbio.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing consumption of fossil fuels is contributing to global resource depletion and environmental pollution. Branched-chain higher alcohols, such as isopentanol and isobutanol, have attracted significant attention as next-generation biofuels. Biofuel production through microbial fermentation offers a green, sustainable, and renewable alternative to chemical synthesis. While enhanced production of isopentanol has been achieved in a variety of chassis, the fermentation yield has not yet reached levels suitable for industrial-scale production. In this study, we employed a continuous perturbation tool to construct a genome-scale perturbation library, combined with an isopentanol biosensor to screen for high-yielding mutants. We identified five high-yielding mutants, each exhibiting an increased glucose conversion rate and isopentanol titer. The F2 strain, in particular, achieved an isopentanol titer of 1.57 ± 0.014 g/L and a yield of 14.04 ± 0.251 mg/g glucose (10% glucose), surpassing the highest values reported to date in engineered <em>Saccharomyces cerevisiae</em>. Systematic transcriptome analysis of the isopentanol synthesis, glycolysis, glycerol metabolism, and ethanol synthesis pathways revealed that <em>MPC</em>, <em>OAC1</em>, <em>BAT2</em>, <em>GUT2</em>, <em>PDC6</em>, and <em>ALD4</em> are linked to efficient isopentanol production. Further analysis of differentially expressed genes (DEGs) identified 17 and 12 co-expressed DEGs (co-DEGs) in all mutants and the two second-round mutants, respectively. In addition, we validated the knockout or overexpression of key co-DEGs. Our results confirmed the critical roles of <em>HOM3</em> and <em>DIP5</em> in isopentanol production, along with genes associated with the aerobic respiratory chain (<em>SDH3</em>, <em>CYT1</em>, <em>COX7</em>, <em>ROX1</em>, and <em>ATG41</em>) and cofactor balance (<em>BNA2</em> and <em>NDE1</em>). Additionally, functional analysis of the co-DEGs revealed that <em>MAL33</em> is associated with the synthesis of branched-chain higher alcohols, expanding the intracellular metabolic network and offering new possibilities for green, cost-effective biofuel production.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 2","pages":"Pages 452-462"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001625","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing consumption of fossil fuels is contributing to global resource depletion and environmental pollution. Branched-chain higher alcohols, such as isopentanol and isobutanol, have attracted significant attention as next-generation biofuels. Biofuel production through microbial fermentation offers a green, sustainable, and renewable alternative to chemical synthesis. While enhanced production of isopentanol has been achieved in a variety of chassis, the fermentation yield has not yet reached levels suitable for industrial-scale production. In this study, we employed a continuous perturbation tool to construct a genome-scale perturbation library, combined with an isopentanol biosensor to screen for high-yielding mutants. We identified five high-yielding mutants, each exhibiting an increased glucose conversion rate and isopentanol titer. The F2 strain, in particular, achieved an isopentanol titer of 1.57 ± 0.014 g/L and a yield of 14.04 ± 0.251 mg/g glucose (10% glucose), surpassing the highest values reported to date in engineered Saccharomyces cerevisiae. Systematic transcriptome analysis of the isopentanol synthesis, glycolysis, glycerol metabolism, and ethanol synthesis pathways revealed that MPC, OAC1, BAT2, GUT2, PDC6, and ALD4 are linked to efficient isopentanol production. Further analysis of differentially expressed genes (DEGs) identified 17 and 12 co-expressed DEGs (co-DEGs) in all mutants and the two second-round mutants, respectively. In addition, we validated the knockout or overexpression of key co-DEGs. Our results confirmed the critical roles of HOM3 and DIP5 in isopentanol production, along with genes associated with the aerobic respiratory chain (SDH3, CYT1, COX7, ROX1, and ATG41) and cofactor balance (BNA2 and NDE1). Additionally, functional analysis of the co-DEGs revealed that MAL33 is associated with the synthesis of branched-chain higher alcohols, expanding the intracellular metabolic network and offering new possibilities for green, cost-effective biofuel production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Developing safe and efficient CGBE editor based on Cas-embedding strategy An engineered Yarrowia lipolytica with rapid growth and efficient lipid utilization Polyhydroxyalkanoate production during electroactive biofilm formation and stabilization in wetland microbial fuel cells for petroleum hydrocarbon bioconversion CRISPR-Cas9-based one-step multiplexed genome editing through optimizing guide RNA processing strategies in Pichia pastoris High-efficiency patatin expression strategies in Komagataella phaffii (Pichia pastoris): Expression cassette toolbox and regulation of protein secretion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1