Electronic and optical properties modulation of heterostructures based on GeP3 and h-BN under biaxial strain

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL Computational and Theoretical Chemistry Pub Date : 2025-02-01 DOI:10.1016/j.comptc.2024.115038
Xiaotian Yang , Hang Xu , Jiping Hu , Jun Zhang , Shipei Ji , Yipu Qu , Fang Wang , Yuhuai Liu
{"title":"Electronic and optical properties modulation of heterostructures based on GeP3 and h-BN under biaxial strain","authors":"Xiaotian Yang ,&nbsp;Hang Xu ,&nbsp;Jiping Hu ,&nbsp;Jun Zhang ,&nbsp;Shipei Ji ,&nbsp;Yipu Qu ,&nbsp;Fang Wang ,&nbsp;Yuhuai Liu","doi":"10.1016/j.comptc.2024.115038","DOIUrl":null,"url":null,"abstract":"<div><div>GeP<sub>3</sub> attracts attention for its high carrier mobility and broad-spectrum absorption. However, its low Seebeck coefficient leads to metallic behavior in multilayer structures, limiting applications. Using first-principles methods and molecular dynamics, this study investigates the stability, electronic properties, and optical performance of h-BN insulating layer heterostructures, and explores the effects of biaxial strain. Results show that the monolayer GeP<sub>3</sub>/h-BN heterostructure retains intrinsic properties while adjusting the bandgap, and the introduction of h-BN significantly enhances the thermal stability of monolayer GeP<sub>3</sub>. The h-BN layer optimizes light absorption and emission in the visible range and causes a slight red shift in the absorption of bilayer GeP<sub>3</sub>, creating a filter-like effect. Strain precisely adjusts the heterostructure’s bandgap, with −6% to + 6 % strain yielding a 0.6 eV bandgap change without stacking effects. The findings provide guidance for the study and application of GeP<sub>3</sub>/h-BN heterostructures in optoelectronic devices under various environmental conditions.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1244 ","pages":"Article 115038"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X24005772","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

GeP3 attracts attention for its high carrier mobility and broad-spectrum absorption. However, its low Seebeck coefficient leads to metallic behavior in multilayer structures, limiting applications. Using first-principles methods and molecular dynamics, this study investigates the stability, electronic properties, and optical performance of h-BN insulating layer heterostructures, and explores the effects of biaxial strain. Results show that the monolayer GeP3/h-BN heterostructure retains intrinsic properties while adjusting the bandgap, and the introduction of h-BN significantly enhances the thermal stability of monolayer GeP3. The h-BN layer optimizes light absorption and emission in the visible range and causes a slight red shift in the absorption of bilayer GeP3, creating a filter-like effect. Strain precisely adjusts the heterostructure’s bandgap, with −6% to + 6 % strain yielding a 0.6 eV bandgap change without stacking effects. The findings provide guidance for the study and application of GeP3/h-BN heterostructures in optoelectronic devices under various environmental conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
期刊最新文献
The role of quantum-confined boron nitride nanotubes in gas monitoring: Adsorption and detection of NO, NO₂, SO₂, and SO₃. DFT and Monte Carlo Study of Chalcone Compounds as Corrosion Inhibitors: Influence of Various Substituents (R = Cl, Br, CH3, OCH3, NH2, OH, N(CH3)2, H, COOH) Electron and positron impact ionization cross sections of neutral molecular species dissociating from C4F7N and its mixtures Bulkier anions versus hydrogen bonding in imidazolium ionic liquids: Stationary point analysis DFT analysis of dimethyl fumarate interactions with B12N12 and B24 nanoclusters for enhanced anticancer drug delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1