George Hannah , Rita T. Sousa , Ioannis Dasoulas , Claudia d’Amato
{"title":"On the legal implications of Large Language Model answers: A prompt engineering approach and a view beyond by exploiting Knowledge Graphs","authors":"George Hannah , Rita T. Sousa , Ioannis Dasoulas , Claudia d’Amato","doi":"10.1016/j.websem.2024.100843","DOIUrl":null,"url":null,"abstract":"<div><div>With the recent surge in popularity of Large Language Models (LLMs), there is the rising risk of users blindly trusting the information in the response. Nevertheless, there are cases where the LLM recommends actions that have potential legal implications and this may put the user in danger. We provide an empirical analysis on multiple existing LLMs showing the urgency of the problem. Hence, we propose a first short-term solution, consisting in an approach for isolating these legal issues through prompt engineering. We prove that this solution is able to stem some risks related to legal implications, nonetheless we also highlight some limitations. Hence, we argue on the need for additional knowledge-intensive resources and specifically Knowledge Graphs for fully solving these limitations. For the purpose, we draw our proposal aiming at designing and developing a solution powered by a legal Knowledge Graph (KG) that, besides capturing and alerting the user on possible legal implications coming from the LLM answers, is also able to provide actual evidence for them by supplying citations of the interested laws. We conclude with a brief discussion on the issues that may be needed to solve for building a comprehensive legal Knowledge Graph</div></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"84 ","pages":"Article 100843"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826824000295","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the recent surge in popularity of Large Language Models (LLMs), there is the rising risk of users blindly trusting the information in the response. Nevertheless, there are cases where the LLM recommends actions that have potential legal implications and this may put the user in danger. We provide an empirical analysis on multiple existing LLMs showing the urgency of the problem. Hence, we propose a first short-term solution, consisting in an approach for isolating these legal issues through prompt engineering. We prove that this solution is able to stem some risks related to legal implications, nonetheless we also highlight some limitations. Hence, we argue on the need for additional knowledge-intensive resources and specifically Knowledge Graphs for fully solving these limitations. For the purpose, we draw our proposal aiming at designing and developing a solution powered by a legal Knowledge Graph (KG) that, besides capturing and alerting the user on possible legal implications coming from the LLM answers, is also able to provide actual evidence for them by supplying citations of the interested laws. We conclude with a brief discussion on the issues that may be needed to solve for building a comprehensive legal Knowledge Graph
期刊介绍:
The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.