On the legal implications of Large Language Model answers: A prompt engineering approach and a view beyond by exploiting Knowledge Graphs

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Web Semantics Pub Date : 2025-01-01 DOI:10.1016/j.websem.2024.100843
George Hannah , Rita T. Sousa , Ioannis Dasoulas , Claudia d’Amato
{"title":"On the legal implications of Large Language Model answers: A prompt engineering approach and a view beyond by exploiting Knowledge Graphs","authors":"George Hannah ,&nbsp;Rita T. Sousa ,&nbsp;Ioannis Dasoulas ,&nbsp;Claudia d’Amato","doi":"10.1016/j.websem.2024.100843","DOIUrl":null,"url":null,"abstract":"<div><div>With the recent surge in popularity of Large Language Models (LLMs), there is the rising risk of users blindly trusting the information in the response. Nevertheless, there are cases where the LLM recommends actions that have potential legal implications and this may put the user in danger. We provide an empirical analysis on multiple existing LLMs showing the urgency of the problem. Hence, we propose a first short-term solution, consisting in an approach for isolating these legal issues through prompt engineering. We prove that this solution is able to stem some risks related to legal implications, nonetheless we also highlight some limitations. Hence, we argue on the need for additional knowledge-intensive resources and specifically Knowledge Graphs for fully solving these limitations. For the purpose, we draw our proposal aiming at designing and developing a solution powered by a legal Knowledge Graph (KG) that, besides capturing and alerting the user on possible legal implications coming from the LLM answers, is also able to provide actual evidence for them by supplying citations of the interested laws. We conclude with a brief discussion on the issues that may be needed to solve for building a comprehensive legal Knowledge Graph</div></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"84 ","pages":"Article 100843"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826824000295","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the recent surge in popularity of Large Language Models (LLMs), there is the rising risk of users blindly trusting the information in the response. Nevertheless, there are cases where the LLM recommends actions that have potential legal implications and this may put the user in danger. We provide an empirical analysis on multiple existing LLMs showing the urgency of the problem. Hence, we propose a first short-term solution, consisting in an approach for isolating these legal issues through prompt engineering. We prove that this solution is able to stem some risks related to legal implications, nonetheless we also highlight some limitations. Hence, we argue on the need for additional knowledge-intensive resources and specifically Knowledge Graphs for fully solving these limitations. For the purpose, we draw our proposal aiming at designing and developing a solution powered by a legal Knowledge Graph (KG) that, besides capturing and alerting the user on possible legal implications coming from the LLM answers, is also able to provide actual evidence for them by supplying citations of the interested laws. We conclude with a brief discussion on the issues that may be needed to solve for building a comprehensive legal Knowledge Graph
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Web Semantics
Journal of Web Semantics 工程技术-计算机:人工智能
CiteScore
6.20
自引率
12.00%
发文量
22
审稿时长
14.6 weeks
期刊介绍: The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.
期刊最新文献
Logic Augmented Generation Knowledge Graphs as a source of trust for LLM-powered enterprise question answering The ESW of Wikidata: Exploratory search workflows on Knowledge Graphs Knowledge graph based entity selection framework for ad-hoc retrieval Enhancing foundation models for scientific discovery via multimodal knowledge graph representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1