Design and structure of overlapping regions in PCA via deep learning

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2024-12-27 DOI:10.1016/j.synbio.2024.12.007
Yan Zheng , Xi-Chen Cui , Fei Guo , Ming-Liang Dou , Ze-Xiong Xie , Ying-Jin Yuan
{"title":"Design and structure of overlapping regions in PCA via deep learning","authors":"Yan Zheng ,&nbsp;Xi-Chen Cui ,&nbsp;Fei Guo ,&nbsp;Ming-Liang Dou ,&nbsp;Ze-Xiong Xie ,&nbsp;Ying-Jin Yuan","doi":"10.1016/j.synbio.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>Polymerase cycling assembly (PCA) stands out as the predominant method in the synthesis of kilobase-length DNA fragments. The design of overlapping regions is the core factor affecting the success rate of synthesis. However, there still exists DNA sequences that are challenging to design and construct in the genome synthesis. Here we proposed a deep learning model based on extensive synthesis data to discern latent sequence representations in overlapping regions with an AUPR of 0.805. Utilizing the model, we developed the SmartCut algorithm aimed at designing oligonucleotides and enhancing the success rate of PCA experiments. This algorithm was successfully applied to sequences with diverse synthesis constraints, 80.4 % of which were synthesized in a single round. We further discovered structure differences represented by major groove width, stagger, slide, and centroid distance between overlapping and non-overlapping regions, which elucidated the model's reasonableness through the lens of physical chemistry. This comprehensive approach facilitates streamlined and efficient investigations into the genome synthesis.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 2","pages":"Pages 442-451"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24001595","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymerase cycling assembly (PCA) stands out as the predominant method in the synthesis of kilobase-length DNA fragments. The design of overlapping regions is the core factor affecting the success rate of synthesis. However, there still exists DNA sequences that are challenging to design and construct in the genome synthesis. Here we proposed a deep learning model based on extensive synthesis data to discern latent sequence representations in overlapping regions with an AUPR of 0.805. Utilizing the model, we developed the SmartCut algorithm aimed at designing oligonucleotides and enhancing the success rate of PCA experiments. This algorithm was successfully applied to sequences with diverse synthesis constraints, 80.4 % of which were synthesized in a single round. We further discovered structure differences represented by major groove width, stagger, slide, and centroid distance between overlapping and non-overlapping regions, which elucidated the model's reasonableness through the lens of physical chemistry. This comprehensive approach facilitates streamlined and efficient investigations into the genome synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Developing safe and efficient CGBE editor based on Cas-embedding strategy An engineered Yarrowia lipolytica with rapid growth and efficient lipid utilization Polyhydroxyalkanoate production during electroactive biofilm formation and stabilization in wetland microbial fuel cells for petroleum hydrocarbon bioconversion CRISPR-Cas9-based one-step multiplexed genome editing through optimizing guide RNA processing strategies in Pichia pastoris High-efficiency patatin expression strategies in Komagataella phaffii (Pichia pastoris): Expression cassette toolbox and regulation of protein secretion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1