A two-stage federated learning method for personalization via selective collaboration

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Communications Pub Date : 2025-01-10 DOI:10.1016/j.comcom.2025.108053
Jiuyun Xu , Liang Zhou , Yingzhi Zhao , Xiaowen Li , Kongshang Zhu , Xiangrui Xu , Qiang Duan , RuRu Zhang
{"title":"A two-stage federated learning method for personalization via selective collaboration","authors":"Jiuyun Xu ,&nbsp;Liang Zhou ,&nbsp;Yingzhi Zhao ,&nbsp;Xiaowen Li ,&nbsp;Kongshang Zhu ,&nbsp;Xiangrui Xu ,&nbsp;Qiang Duan ,&nbsp;RuRu Zhang","doi":"10.1016/j.comcom.2025.108053","DOIUrl":null,"url":null,"abstract":"<div><div>As an emerging distributed learning method, Federated learning has received much attention recently. Traditional federated learning aims to train a global model on a decentralized dataset, but in the case of uneven data distribution, a single global model may not be well adapted to each client, and even the local training performance of some clients may be superior to the global model. Under this background, clustering resemblance clients into the same group is a common approach. However, there is still some heterogeneity of clients within the same group, and general clustering methods usually assume that clients belong to a specific class only, but in real-world scenarios, it is difficult to accurately categorize clients into one class due to the complexity of data distribution. To solve these problems, we propose a two-stage <strong>fed</strong>erated learning method for personalization via <strong>s</strong>elective <strong>c</strong>ollaboration (FedSC). Different from previous clustering methods, we focus on how to independently exclude other clients with significant distributional differences for each client and break the restriction that clients can only belong to one category. We tend to select collaborators for each client who are more conducive to achieving local mission goals and build a collaborative group for them independently, and every client engages in a federated learning process only with group members to avoid negative knowledge transfer. Furthermore, FedSC performs finer-grained processing within each group, using an adaptive hierarchical fusion strategy of group and local models instead of the traditional approach’s scheme of directly overriding local models. Extensive experiments show that our proposed method considerably increases model performance under different heterogeneity scenarios.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"232 ","pages":"Article 108053"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000106","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As an emerging distributed learning method, Federated learning has received much attention recently. Traditional federated learning aims to train a global model on a decentralized dataset, but in the case of uneven data distribution, a single global model may not be well adapted to each client, and even the local training performance of some clients may be superior to the global model. Under this background, clustering resemblance clients into the same group is a common approach. However, there is still some heterogeneity of clients within the same group, and general clustering methods usually assume that clients belong to a specific class only, but in real-world scenarios, it is difficult to accurately categorize clients into one class due to the complexity of data distribution. To solve these problems, we propose a two-stage federated learning method for personalization via selective collaboration (FedSC). Different from previous clustering methods, we focus on how to independently exclude other clients with significant distributional differences for each client and break the restriction that clients can only belong to one category. We tend to select collaborators for each client who are more conducive to achieving local mission goals and build a collaborative group for them independently, and every client engages in a federated learning process only with group members to avoid negative knowledge transfer. Furthermore, FedSC performs finer-grained processing within each group, using an adaptive hierarchical fusion strategy of group and local models instead of the traditional approach’s scheme of directly overriding local models. Extensive experiments show that our proposed method considerably increases model performance under different heterogeneity scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
期刊最新文献
Editorial Board Secrecy performance optimization for UAV-based relay NOMA systems with friendly jamming DFFL: A dual fairness framework for federated learning Multi-layer guided reinforcement learning task offloading based on Softmax policy in smart cities Incentive mechanisms for non-proprietary vehicles in vehicular crowdsensing with budget constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1