Guanggang Ji , Shaohua Li , Guizhen Feng , Zhengchuan Li , Xiaoguan Shen
{"title":"Time-delay compensation control and stability analysis of vehicle semi-active suspension systems","authors":"Guanggang Ji , Shaohua Li , Guizhen Feng , Zhengchuan Li , Xiaoguan Shen","doi":"10.1016/j.ymssp.2025.112414","DOIUrl":null,"url":null,"abstract":"<div><div>With the aim of enhancing the ride comfort and handling stability of vehicles, an improved Takagi-Sugeno (T-S) fuzzy Smith predictive time-delay compensation control strategy (ITSFS) is proposed. Firstly, the vehicle semi-active suspension model with time-delay is established, and the influence of different time-delay sizes is analyzed. Then, combining the theory of time-delay differential equations, the improved Smith predictive time-delay compensation controller is designed. Finally, by combining the semi-active suspension T-S fuzzy controller with the improved Smith predictive time-delay compensation controller, an improved T-S fuzzy Smith predictive time-delay compensation controller for the semi-active suspension system is established. The simulation and experimental results under different operating conditions show that the proposed control strategy can effectively reduce the impact of time-delay on the vehicle semi-active suspension system, significantly improve the dynamic performance of the semi-active suspension system, and have strong adaptive ability to operating conditions. It provides a new method and idea for the research of the semi-active suspension and its control system.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112414"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001153","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the aim of enhancing the ride comfort and handling stability of vehicles, an improved Takagi-Sugeno (T-S) fuzzy Smith predictive time-delay compensation control strategy (ITSFS) is proposed. Firstly, the vehicle semi-active suspension model with time-delay is established, and the influence of different time-delay sizes is analyzed. Then, combining the theory of time-delay differential equations, the improved Smith predictive time-delay compensation controller is designed. Finally, by combining the semi-active suspension T-S fuzzy controller with the improved Smith predictive time-delay compensation controller, an improved T-S fuzzy Smith predictive time-delay compensation controller for the semi-active suspension system is established. The simulation and experimental results under different operating conditions show that the proposed control strategy can effectively reduce the impact of time-delay on the vehicle semi-active suspension system, significantly improve the dynamic performance of the semi-active suspension system, and have strong adaptive ability to operating conditions. It provides a new method and idea for the research of the semi-active suspension and its control system.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems