Logarithmic lattice models for flows with boundaries

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2025-02-01 DOI:10.1016/j.physd.2024.134473
Ciro S. Campolina , Alexei A. Mailybaev
{"title":"Logarithmic lattice models for flows with boundaries","authors":"Ciro S. Campolina ,&nbsp;Alexei A. Mailybaev","doi":"10.1016/j.physd.2024.134473","DOIUrl":null,"url":null,"abstract":"<div><div>Many fundamental problems in fluid dynamics are related to the effects of solid boundaries. In general, they install sharp gradients and contribute to the development of small-scale structures, which are computationally expensive to resolve with numerical simulations. A way to access extremely fine scales with a reduced number of degrees of freedom is to consider the equations on logarithmic lattices in Fourier space. Here we introduce new toy models for flows with walls, by showing how to add boundaries to the logarithmic lattice framework. The resulting equations retain many important properties of the original systems, such as the conserved quantities, the symmetries and the boundary effects. We apply this technique to many flows, with emphasis on the inviscid limit of the Navier–Stokes equations. For this setup, simulations reach impressively large Reynolds numbers and disclose interesting insights about the original problem.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"472 ","pages":"Article 134473"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924004238","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Many fundamental problems in fluid dynamics are related to the effects of solid boundaries. In general, they install sharp gradients and contribute to the development of small-scale structures, which are computationally expensive to resolve with numerical simulations. A way to access extremely fine scales with a reduced number of degrees of freedom is to consider the equations on logarithmic lattices in Fourier space. Here we introduce new toy models for flows with walls, by showing how to add boundaries to the logarithmic lattice framework. The resulting equations retain many important properties of the original systems, such as the conserved quantities, the symmetries and the boundary effects. We apply this technique to many flows, with emphasis on the inviscid limit of the Navier–Stokes equations. For this setup, simulations reach impressively large Reynolds numbers and disclose interesting insights about the original problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
Thermal lifetime of breathers Generalized Airy polynomials, Hankel determinants and asymptotics Probability distribution in the Toda system: The singular route to a steady state Effects of nonlinear coupling parameters on the formation of intrinsic localized modes in a quantum 1D mixed Klein–Gordon/Fermi–Pasta–Ulam chain Nonlinearity mediated miscibility dynamics of mass-imbalanced binary Bose–Einstein condensate for circular atomtronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1