Reiya Yabuki , Koki Nishimura , Yuta Sawada , Masaaki Fuki , Yasuhiro Kobori , Nobuhiro Yanai
{"title":"Dynamic electron and nuclear spin polarization in solution using porphyrin and tris(2,4,6-trichlorophenyl)-methyl (TTM) radical derivatives","authors":"Reiya Yabuki , Koki Nishimura , Yuta Sawada , Masaaki Fuki , Yasuhiro Kobori , Nobuhiro Yanai","doi":"10.1016/j.jmro.2024.100181","DOIUrl":null,"url":null,"abstract":"<div><div>Chemically induced dynamic electron polarization (CIDEP) generates radical electron spins with high polarization at room temperature by quenching the photo-excited state of chromophores, which is useful for microwave-free optical dynamic nuclear polarization (DNP) in solution. While nitroxyl (TEMPO) radicals are typically used for this purpose, we show that a tris(2,4,6-trichlorophenyl)-methyl (TTM) radical derivative shows greater electron spin polarization than TEMPO by CIDEP using porphyrin chromophores. This is attributed to the longer spin-lattice relaxation time of TTM radicals, with a contribution of efficient quenching of chromophore photo-excited state by energy transfer from the triplet state of porphyrins to the doublet state of the TTM radicals. The porphyrin-TTM pair shows a larger nuclear spin polarization under continuous laser excitation than the porphyrin-TEMPO pair because of the larger polarization and longer spin-lattice relaxation time of the TTM radical electron spins. This work demonstrates the first example of in-solution CIDEP and optically-driven DNP using TTM radicals, opening new opportunities in a wide range of biological and medical applications.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"22 ","pages":"Article 100181"},"PeriodicalIF":2.6240,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441024000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chemically induced dynamic electron polarization (CIDEP) generates radical electron spins with high polarization at room temperature by quenching the photo-excited state of chromophores, which is useful for microwave-free optical dynamic nuclear polarization (DNP) in solution. While nitroxyl (TEMPO) radicals are typically used for this purpose, we show that a tris(2,4,6-trichlorophenyl)-methyl (TTM) radical derivative shows greater electron spin polarization than TEMPO by CIDEP using porphyrin chromophores. This is attributed to the longer spin-lattice relaxation time of TTM radicals, with a contribution of efficient quenching of chromophore photo-excited state by energy transfer from the triplet state of porphyrins to the doublet state of the TTM radicals. The porphyrin-TTM pair shows a larger nuclear spin polarization under continuous laser excitation than the porphyrin-TEMPO pair because of the larger polarization and longer spin-lattice relaxation time of the TTM radical electron spins. This work demonstrates the first example of in-solution CIDEP and optically-driven DNP using TTM radicals, opening new opportunities in a wide range of biological and medical applications.