Assessing the effects of loading rate on fracture toughness of AISI 1020 and API 5L X80 steels with hydrogen charging: experimental and numeric simulation study

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2025-02-07 DOI:10.1016/j.engfracmech.2024.110771
Hantong Wang , Ci Zhang , Haonan Ma , Zhi Tong , Yibai Huang , Ying Jin , Cheng Su , Wenyue Zheng
{"title":"Assessing the effects of loading rate on fracture toughness of AISI 1020 and API 5L X80 steels with hydrogen charging: experimental and numeric simulation study","authors":"Hantong Wang ,&nbsp;Ci Zhang ,&nbsp;Haonan Ma ,&nbsp;Zhi Tong ,&nbsp;Yibai Huang ,&nbsp;Ying Jin ,&nbsp;Cheng Su ,&nbsp;Wenyue Zheng","doi":"10.1016/j.engfracmech.2024.110771","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the effect of hydrogen on fracture toughness of AISI 1020 and API 5L X80 steels using experimental measurement technique and numeric simulation. Hydrogen was introduced into Single Edge Notch Bend (SENB) specimens through in-situ electrochemical charging techniques. The study varied the loading rates (K̇) and observed a significant reduction in the fracture toughness of both types of steels with hydrogen presence, worsening as loading rates decreased. The findings illustrated that the current standards of hydrogen compatibility test, which specifies a loading rate that ranges from <span><math><mrow><mn>0.1</mn><mi>M</mi><mi>P</mi><mi>a</mi><msqrt><mi>m</mi></msqrt><mo>/</mo><mi>m</mi><mi>i</mi><mi>n</mi></mrow></math></span> to <span><math><mrow><mn>1</mn><mspace></mspace><mi>M</mi><mi>P</mi><mi>a</mi><msqrt><mi>m</mi></msqrt><mo>/</mo><mi>m</mi><mi>i</mi><mi>n</mi></mrow></math></span> in toughness tests, may produce non-conservative results by not fully capturing the degradation at lower loading rates (K̇ &lt;<<span><math><mn>0.1</mn><mspace></mspace><mi>M</mi><mi>P</mi><mi>a</mi><msqrt><mi>m</mi></msqrt><mo>/</mo><mi>m</mi><mi>i</mi><mi>n</mi></math></span>). The low-strength steel (AISI 1020) showed a fracture mode transition from the Hydrogen-Enhanced Localized Plasticity (HELP) to the Hydrogen-Enhanced Decohesion (HEDE) as the K̇ decreases. Nevertheless, the crack re-initiation sites are always found at the tips of pre-cracks, which coincide with the areas of a high local hydrogen concentration and a high plastic strain. In contrast, the crack initiation sites in X80 steel tend to shift from the regions with high-strain (i.e. near the crack front) to areas with high hydrostatic stress (some distance away from the crack front) as the K̇ decreases, although it is still a predominantly quasi-cleavage (QC) fracture mode.</div><div>Finite element analysis further revealed that the diffusion and trapping of hydrogen atoms are significantly influenced by the gradient of hydrostatic stress and increment of plastic strain in the crack front region. In AISI 1020 steel, the concentration of trapped hydrogen significantly exceeds that of diffusible lattice interstitial hydrogen; In this case, the trapped hydrogen predominately dictates the distribution profile of total hydrogen at all K̇ conditions, whereas in X80 steel, the relative dominance of diffusible and trapped hydrogen depends on the loading rate: at lower K̇, diffusible hydrogen concentration at lattice sites exceeds that of the trapped hydrogen and there is a dynamic equilibrium relationship between the hydrogen induced by hydrostatic stress and the hydrogen trapped by plastic strain; at higher K̇, the hydrogen in trap sites dominate the hydrogen distribution. The differences in hydrogen concentration distribution are linked with different crack nucleation behaviours of the two steels under different loading rates, as well corroborated by fractographic observation of the actual fracture surface.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"314 ","pages":"Article 110771"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424009342","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the effect of hydrogen on fracture toughness of AISI 1020 and API 5L X80 steels using experimental measurement technique and numeric simulation. Hydrogen was introduced into Single Edge Notch Bend (SENB) specimens through in-situ electrochemical charging techniques. The study varied the loading rates (K̇) and observed a significant reduction in the fracture toughness of both types of steels with hydrogen presence, worsening as loading rates decreased. The findings illustrated that the current standards of hydrogen compatibility test, which specifies a loading rate that ranges from 0.1MPam/min to 1MPam/min in toughness tests, may produce non-conservative results by not fully capturing the degradation at lower loading rates (K̇ <<0.1MPam/min). The low-strength steel (AISI 1020) showed a fracture mode transition from the Hydrogen-Enhanced Localized Plasticity (HELP) to the Hydrogen-Enhanced Decohesion (HEDE) as the K̇ decreases. Nevertheless, the crack re-initiation sites are always found at the tips of pre-cracks, which coincide with the areas of a high local hydrogen concentration and a high plastic strain. In contrast, the crack initiation sites in X80 steel tend to shift from the regions with high-strain (i.e. near the crack front) to areas with high hydrostatic stress (some distance away from the crack front) as the K̇ decreases, although it is still a predominantly quasi-cleavage (QC) fracture mode.
Finite element analysis further revealed that the diffusion and trapping of hydrogen atoms are significantly influenced by the gradient of hydrostatic stress and increment of plastic strain in the crack front region. In AISI 1020 steel, the concentration of trapped hydrogen significantly exceeds that of diffusible lattice interstitial hydrogen; In this case, the trapped hydrogen predominately dictates the distribution profile of total hydrogen at all K̇ conditions, whereas in X80 steel, the relative dominance of diffusible and trapped hydrogen depends on the loading rate: at lower K̇, diffusible hydrogen concentration at lattice sites exceeds that of the trapped hydrogen and there is a dynamic equilibrium relationship between the hydrogen induced by hydrostatic stress and the hydrogen trapped by plastic strain; at higher K̇, the hydrogen in trap sites dominate the hydrogen distribution. The differences in hydrogen concentration distribution are linked with different crack nucleation behaviours of the two steels under different loading rates, as well corroborated by fractographic observation of the actual fracture surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board Damage characteristics and YOLO automated crack detection of fissured rock masses under true-triaxial mining unloading conditions Dynamic mechanical response and failure behaviour of single-flawed rocks under combined compression-shear loading Life evaluation method for nickel-based directionally solidified turbine blade-like specimens under near-service conditions An evaluation method for the hygrothermal effect on fatigue crack propagation in CFRP–strengthened RC beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1