Thermal stability and combustion properties of polyurethane foam modified with manganese phytate and expandable graphite

IF 1.6 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2025-01-02 DOI:10.1080/1023666X.2024.2421816
Xu Zhang , Meng Zhang , Handong Li , Zhi Wang , Hua Xie
{"title":"Thermal stability and combustion properties of polyurethane foam modified with manganese phytate and expandable graphite","authors":"Xu Zhang ,&nbsp;Meng Zhang ,&nbsp;Handong Li ,&nbsp;Zhi Wang ,&nbsp;Hua Xie","doi":"10.1080/1023666X.2024.2421816","DOIUrl":null,"url":null,"abstract":"<div><div>Manganese phytate (MnPa) was prepared and synergistically combined with expandable graphite (EG) flame retardant modified polyurethane foam (PUF). Utilizing thermogravimetric (TG), pyrolysis kinetic analysis, CONE analysis, smoke toxicity analysis, limiting oxygen index (LOI), and UL-94 horizontal combustion test procedures, the thermal stability and combustion parameters of the modified PUFs were examined. The flame retardancy and smoke suppression of the modified PUFs were analyzed based on the heat release rate (HRR), total heat release (THR), smoke production rate (SPR), and total smoke release (TSR). The results showed that MEPUF3 had the highest thermal decomposition rate temperature, initial thermogravimetric temperature, and activation energy (E). It was shown that MEPUF3 had the lowest HRR of 17.68 kW/m<sup>2</sup>, the lowest THR of 1.15 MJ/m<sup>2</sup>, the lowest SPR of 0.0046 m<sup>2</sup>/s, the lowest TSR of 19.58 m<sup>2</sup>/m<sup>2</sup>, the lowest Ds of 32.1, the highest transmittance of 57.7%, and the highest LOI of 23.0%. The present study showed that MEPUF3 possessed good thermal stability and flame retardant properties, which provided useful references for subsequent phytate and EG-modified PUFs.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 1","pages":"Pages 47-67"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese phytate (MnPa) was prepared and synergistically combined with expandable graphite (EG) flame retardant modified polyurethane foam (PUF). Utilizing thermogravimetric (TG), pyrolysis kinetic analysis, CONE analysis, smoke toxicity analysis, limiting oxygen index (LOI), and UL-94 horizontal combustion test procedures, the thermal stability and combustion parameters of the modified PUFs were examined. The flame retardancy and smoke suppression of the modified PUFs were analyzed based on the heat release rate (HRR), total heat release (THR), smoke production rate (SPR), and total smoke release (TSR). The results showed that MEPUF3 had the highest thermal decomposition rate temperature, initial thermogravimetric temperature, and activation energy (E). It was shown that MEPUF3 had the lowest HRR of 17.68 kW/m2, the lowest THR of 1.15 MJ/m2, the lowest SPR of 0.0046 m2/s, the lowest TSR of 19.58 m2/m2, the lowest Ds of 32.1, the highest transmittance of 57.7%, and the highest LOI of 23.0%. The present study showed that MEPUF3 possessed good thermal stability and flame retardant properties, which provided useful references for subsequent phytate and EG-modified PUFs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植酸锰和可膨胀石墨改性聚氨酯泡沫的热稳定性和燃烧性能
制备了植酸锰(MnPa),并与可膨胀石墨(EG)阻燃改性聚氨酯泡沫(PUF)协同复合。采用热重分析(TG)、热解动力学分析、CONE分析、烟毒性分析、极限氧指数(LOI)和UL-94水平燃烧试验等方法,对改性PUFs的热稳定性和燃烧参数进行了研究。从放热率(HRR)、总放热率(THR)、产烟率(SPR)和总放烟率(TSR)等方面分析了改性puf的阻燃性和抑烟性。结果表明,MEPUF3具有最高的热分解速率温度、初始热重温度和活化能(E), HRR最低为17.68 kW/m2, THR最低为1.15 MJ/m2, SPR最低为0.0046 m2/s, TSR最低为19.58 m2/m2, Ds最低为32.1,透过率最高为57.7%,LOI最高为23.0%。研究结果表明,MEPUF3具有良好的热稳定性和阻燃性能,为后续的植酸盐和eg改性puf提供了有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Fast and energy efficient crosslinking of PVA to make water resistant coating using glutaraldehyde Synthesis, molecular interactions, and antioxidant properties of a new terpolymer: formation of epoxy-based terpolymer composite on glass Immobilization of α-amylase on electrospun polycaprolactone (PCL)/chitosan (CHI) nanofibers: a novel approach to improve enzyme stability and performance Poly(ethylene-co-methacrylic acid) ionomer dynamic phase composition and polymer chain mobility characterization by time domain NMR Alkyd resins from Argemone mexicana seed oil: synthesis and characterization for use in anticorrosive coating applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1