Induction of physico-chemical properties in mercerized Yucca filamentosa fiber-based graft copolymer through response surface methodology and its characterization

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2025-01-02 DOI:10.1080/1023666X.2024.2419050
Surjit Kaur , Mithu Maiti Jana , Asim Kumar Jana
{"title":"Induction of physico-chemical properties in mercerized Yucca filamentosa fiber-based graft copolymer through response surface methodology and its characterization","authors":"Surjit Kaur ,&nbsp;Mithu Maiti Jana ,&nbsp;Asim Kumar Jana","doi":"10.1080/1023666X.2024.2419050","DOIUrl":null,"url":null,"abstract":"<div><div>This research article describes the physicochemical modification of mercerized <em>Yucca filamentosa (Yf<sub>m</sub>)</em> fiber by graft copolymerization with ethylmethacrylate, using ferrous ammonium sulfate-potassium persulfate (FAS-KPS) as a redox initiator. Initially, six process parameters; reaction duration, reaction temperature, solvent amount, pH, FAS:KPS ratio, and monomer concentration were used in the study in a sequential experimental design technique, and the significant process variables affecting the yield of the graft copolymer were identified. The resolution-V design method identified the significant parameters as the reaction temperature, amount of solvent, and the concentration of monomer. In second phase of the study, the screened variables were utilized in the development of a model through the technique of response surface methodology (RSM) for the prediction of the yields, and its optimization. The developed RSM model fitted well with the experimental data, and predicted for the optimal conditions of reactions as reaction duration 120 min, pH 7.0, and the monomer 2.96 × 10<sup>−3 </sup>mol/L; at which the highest graft yield percentage obtained was 133.7%. The techniques of FTIR, SEM, and XRD were used for the characterization of untreated fiber, mercerized fiber, and graft copolymers. Studies of the various physico-chemical properties showed that the produced graft copolymers were more resistant to acid and base than the both natural and mercerized fibers.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"30 1","pages":"Pages 26-46"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000490","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This research article describes the physicochemical modification of mercerized Yucca filamentosa (Yfm) fiber by graft copolymerization with ethylmethacrylate, using ferrous ammonium sulfate-potassium persulfate (FAS-KPS) as a redox initiator. Initially, six process parameters; reaction duration, reaction temperature, solvent amount, pH, FAS:KPS ratio, and monomer concentration were used in the study in a sequential experimental design technique, and the significant process variables affecting the yield of the graft copolymer were identified. The resolution-V design method identified the significant parameters as the reaction temperature, amount of solvent, and the concentration of monomer. In second phase of the study, the screened variables were utilized in the development of a model through the technique of response surface methodology (RSM) for the prediction of the yields, and its optimization. The developed RSM model fitted well with the experimental data, and predicted for the optimal conditions of reactions as reaction duration 120 min, pH 7.0, and the monomer 2.96 × 10−3 mol/L; at which the highest graft yield percentage obtained was 133.7%. The techniques of FTIR, SEM, and XRD were used for the characterization of untreated fiber, mercerized fiber, and graft copolymers. Studies of the various physico-chemical properties showed that the produced graft copolymers were more resistant to acid and base than the both natural and mercerized fibers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Exploring the material and mechanical characteristics of 3D printed composites utilizing nSiO2-particulate-reinforced PLA/HDPE filaments with potential applications in the medical field Fabrication, optical behavior and structural characteristics of the poly (4-chloroaniline)/silver nanoparticles materials for optical devices Thermal stability and combustion properties of polyurethane foam modified with manganese phytate and expandable graphite Synthesis of decorated polyborosiloxane for enhancing the flame retardancy and mechanical property of epoxy resin Physical and biological characteristics of electrospun poly (vinyl alcohol) and reduced graphene oxide nanofibrous structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1