Adaptive phase-field modeling of fracture propagation in layered media: Effects of mechanical property mismatches, layer thickness, and interface strength

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2025-02-07 DOI:10.1016/j.engfracmech.2024.110672
Salman Khan , Ishank Singh , Chandrasekhar Annavarapu , Antonio Rodríguez-Ferran
{"title":"Adaptive phase-field modeling of fracture propagation in layered media: Effects of mechanical property mismatches, layer thickness, and interface strength","authors":"Salman Khan ,&nbsp;Ishank Singh ,&nbsp;Chandrasekhar Annavarapu ,&nbsp;Antonio Rodríguez-Ferran","doi":"10.1016/j.engfracmech.2024.110672","DOIUrl":null,"url":null,"abstract":"<div><div>Fracture propagation in layered media is investigated using an adaptive phase-field method. We focus on the interplay between cracks and interfaces, considering both perfectly and imperfectly bonded interfaces. For perfectly bonded interfaces, three-layer models are analyzed to study the effects of mechanical property mismatches, layer thickness, and confinement pressure on crack growth. Results reveal that critical energy release rate mismatch significantly influences the crack geometry, leading to single through-going fractures, middle layer fragmentation, or delamination. There is an inverse relationship between layer thickness and fragmentation, and between confinement pressure and delamination. For imperfectly bonded interfaces, a phase-field method incorporating an interface energy term is introduced and validated with benchmark examples. This model is used to study the combined effects of mechanical property mismatch and interface strength on crack growth. Our findings demonstrate that the interface strength strongly influences the dominant failure mechanism, with high strength favoring mechanical property mismatch-driven fracture and low strength leading to interfacial failure. Finally, the robustness of the proposed method is illustrated through a complex seven-layer model. This study provides valuable insights into the various factors influencing macroscopic failure mechanisms in layered materials.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"314 ","pages":"Article 110672"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001379442400835X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fracture propagation in layered media is investigated using an adaptive phase-field method. We focus on the interplay between cracks and interfaces, considering both perfectly and imperfectly bonded interfaces. For perfectly bonded interfaces, three-layer models are analyzed to study the effects of mechanical property mismatches, layer thickness, and confinement pressure on crack growth. Results reveal that critical energy release rate mismatch significantly influences the crack geometry, leading to single through-going fractures, middle layer fragmentation, or delamination. There is an inverse relationship between layer thickness and fragmentation, and between confinement pressure and delamination. For imperfectly bonded interfaces, a phase-field method incorporating an interface energy term is introduced and validated with benchmark examples. This model is used to study the combined effects of mechanical property mismatch and interface strength on crack growth. Our findings demonstrate that the interface strength strongly influences the dominant failure mechanism, with high strength favoring mechanical property mismatch-driven fracture and low strength leading to interfacial failure. Finally, the robustness of the proposed method is illustrated through a complex seven-layer model. This study provides valuable insights into the various factors influencing macroscopic failure mechanisms in layered materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board Damage characteristics and YOLO automated crack detection of fissured rock masses under true-triaxial mining unloading conditions Dynamic mechanical response and failure behaviour of single-flawed rocks under combined compression-shear loading Life evaluation method for nickel-based directionally solidified turbine blade-like specimens under near-service conditions An evaluation method for the hygrothermal effect on fatigue crack propagation in CFRP–strengthened RC beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1