Dynamic prediction of aluminum alloy fatigue crack growth rate based on class incremental learning and multi-dimensional variational autoencoder

IF 5.3 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2025-02-07 DOI:10.1016/j.engfracmech.2024.110721
Yufeng Peng , Yongzhen Zhang , Lijun Zhang , Leijiang Yao , Xiaoyan Tong , Xingpeng Guo
{"title":"Dynamic prediction of aluminum alloy fatigue crack growth rate based on class incremental learning and multi-dimensional variational autoencoder","authors":"Yufeng Peng ,&nbsp;Yongzhen Zhang ,&nbsp;Lijun Zhang ,&nbsp;Leijiang Yao ,&nbsp;Xiaoyan Tong ,&nbsp;Xingpeng Guo","doi":"10.1016/j.engfracmech.2024.110721","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum alloys, valued for their low density and high strength-to-weight ratio, are crucial in the aerospace industry. To enhance their security and maintenance economy in service, this work employs a class incremental learning method (CIL) to predict the fatigue crack growth rate of 2xxx and 7xxx series aluminum alloys. The developed multi-dimensional autoencoder class incremental learning and data update monitoring feature enhanced prediction model (MDACIL-RTM-FIEP) integrates mechanical, environmental, and material features using variational autoencoders (VAE) for deep feature learning. Results show that the model, through the data update monitoring and incremental triggering mechanism (DUM-IT), adapts effectively to data changes, significantly enhancing prediction accuracy. The model’s fatigue crack growth rate (FCGR) incremental learning accuracy (IAC) improved to 0.9644 from 0.8715, and its backward transfer (BT) value decreased to −0.0182 from −0.6325, indicating excellent adaptability of new knowledge and retention of old knowledge. It also addresses the “catastrophic forgetting” issue, underscoring the effectiveness of CIL strategies in dynamic data environments.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"314 ","pages":"Article 110721"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424008841","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum alloys, valued for their low density and high strength-to-weight ratio, are crucial in the aerospace industry. To enhance their security and maintenance economy in service, this work employs a class incremental learning method (CIL) to predict the fatigue crack growth rate of 2xxx and 7xxx series aluminum alloys. The developed multi-dimensional autoencoder class incremental learning and data update monitoring feature enhanced prediction model (MDACIL-RTM-FIEP) integrates mechanical, environmental, and material features using variational autoencoders (VAE) for deep feature learning. Results show that the model, through the data update monitoring and incremental triggering mechanism (DUM-IT), adapts effectively to data changes, significantly enhancing prediction accuracy. The model’s fatigue crack growth rate (FCGR) incremental learning accuracy (IAC) improved to 0.9644 from 0.8715, and its backward transfer (BT) value decreased to −0.0182 from −0.6325, indicating excellent adaptability of new knowledge and retention of old knowledge. It also addresses the “catastrophic forgetting” issue, underscoring the effectiveness of CIL strategies in dynamic data environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于类增量学习和多维变分自编码器的铝合金疲劳裂纹扩展速率动态预测
铝合金因其低密度和高强度重量比而受到重视,在航空航天工业中至关重要。为了提高2xxx和7xxx系列铝合金在服役中的安全性和维修经济性,本文采用类增量学习法对2xxx和7xxx系列铝合金的疲劳裂纹扩展速率进行了预测。开发的多维自编码器类增量学习和数据更新监测特征增强预测模型(MDACIL-RTM-FIEP)使用变分自编码器(VAE)进行深度特征学习,集成了机械、环境和材料特征。结果表明,该模型通过数据更新监测和增量触发机制(dumit)有效地适应了数据变化,显著提高了预测精度。模型的疲劳裂纹扩展速率(FCGR)增量学习精度(IAC)从0.8715提高到0.9644,逆向迁移(BT)值从- 0.6325降低到- 0.0182,表明模型对新知识具有良好的适应性和对旧知识的保留能力。它还解决了“灾难性遗忘”问题,强调了CIL策略在动态数据环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Microscopic investigation of internal damage and fracture behavior in asphalt binders: Influence of aging and rejuvenation Study on the guiding mechanism of controlling pore water pressure on the propagation path of hydraulic fractures Experimental study on the fragmentation properties and energy dissipation of coal-rock composite under impact loading Editorial Board Enhancing fracture resistance of concrete with hybrid micro–macro steel and polypropylene fibers under multiple failure modes: Experimental and reliability assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1