Developing ground motion prediction models for West Java: A machine learning approach to support Indonesia's earthquake early warning system

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2025-02-01 DOI:10.1016/j.acags.2024.100212
Andy Rachmadan, Ardiansyah Koeshidayatullah, SanLinn I. Kaka
{"title":"Developing ground motion prediction models for West Java: A machine learning approach to support Indonesia's earthquake early warning system","authors":"Andy Rachmadan,&nbsp;Ardiansyah Koeshidayatullah,&nbsp;SanLinn I. Kaka","doi":"10.1016/j.acags.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Indonesia, one of the most earthquake-prone countries in the world, is currently developing an Earthquake Early Warning (EEW) system. A key component of this system, the Regional EEW, relies on Ground Motion Prediction models (GMPMs) to issue end-user alerts. However, in West Java, one of the pilot regions for this project, there is a lack of region-specific GMPMs essential for accurate early warnings. Traditionally, GMPMs are developed using linear regression based on complex, predefined mathematical equations and coefficients. However, Machine learning offers the advantages of bypassing the need for predefined equations and effectively capturing the nonlinear behavior present in ground motion data. To address this gap, we evaluated three machine learning algorithms (i.e. Artificial Neural Network [ANN], Gradient Boosting [GB], and Random Forest [RF]) to develop GMPMs for three tectonic categories: shallow-crustal, interface, and intraslab. These models were used to predict Peak Ground Acceleration (PGA) in West Java, utilizing 3116 strong ground motion records from 365 earthquakes with moment magnitude ranging from 2.4 to 7 and epicentral distance between 5.5 and 867 km, recorded since 2010. Our results show that The Gradient Boosting model outperformed the others across all three tectonic categories, with the lowest Mean Squared Error values (0.94, 0.60, 0.65), and Standard Deviation of Residuals (0.97, 0.77, 0.80), as well as the highest Pearson correlation coefficient-value (0.83, 0.88, 0.90) for shallow-crustal, interface, and intraslab events, respectively, demonstrating strong accuracy in predicting PGA. The model was further validated with recent earthquake data and from 2024 showing good agreement and confirming its robustness. Epicentral Distance and Moment Magnitude were the most influential in predicting PGA among the six explanatory variables used in this study. These findings highlight the potential of machine learning models to improve the accuracy of ground-shaking predictions, contributing to the success of Indonesia's Earthquake Early Warning System (EEWS).</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100212"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Indonesia, one of the most earthquake-prone countries in the world, is currently developing an Earthquake Early Warning (EEW) system. A key component of this system, the Regional EEW, relies on Ground Motion Prediction models (GMPMs) to issue end-user alerts. However, in West Java, one of the pilot regions for this project, there is a lack of region-specific GMPMs essential for accurate early warnings. Traditionally, GMPMs are developed using linear regression based on complex, predefined mathematical equations and coefficients. However, Machine learning offers the advantages of bypassing the need for predefined equations and effectively capturing the nonlinear behavior present in ground motion data. To address this gap, we evaluated three machine learning algorithms (i.e. Artificial Neural Network [ANN], Gradient Boosting [GB], and Random Forest [RF]) to develop GMPMs for three tectonic categories: shallow-crustal, interface, and intraslab. These models were used to predict Peak Ground Acceleration (PGA) in West Java, utilizing 3116 strong ground motion records from 365 earthquakes with moment magnitude ranging from 2.4 to 7 and epicentral distance between 5.5 and 867 km, recorded since 2010. Our results show that The Gradient Boosting model outperformed the others across all three tectonic categories, with the lowest Mean Squared Error values (0.94, 0.60, 0.65), and Standard Deviation of Residuals (0.97, 0.77, 0.80), as well as the highest Pearson correlation coefficient-value (0.83, 0.88, 0.90) for shallow-crustal, interface, and intraslab events, respectively, demonstrating strong accuracy in predicting PGA. The model was further validated with recent earthquake data and from 2024 showing good agreement and confirming its robustness. Epicentral Distance and Moment Magnitude were the most influential in predicting PGA among the six explanatory variables used in this study. These findings highlight the potential of machine learning models to improve the accuracy of ground-shaking predictions, contributing to the success of Indonesia's Earthquake Early Warning System (EEWS).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Deformation analysis by an improved similarity transformation Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing Pymaginverse: A python package for global geomagnetic field modeling Automatic variogram inference using pre-trained Convolutional Neural Networks X-ray Micro-CT based characterization of rock cuttings with deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1