Predictive regressive models of recent marsh sediment thickness improve the quantification of coastal marsh sediment budgets

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2025-02-01 DOI:10.1016/j.acags.2024.100215
Christopher G. Smith , Julie Bernier , Alisha M. Ellis , Kathryn E.L. Smith
{"title":"Predictive regressive models of recent marsh sediment thickness improve the quantification of coastal marsh sediment budgets","authors":"Christopher G. Smith ,&nbsp;Julie Bernier ,&nbsp;Alisha M. Ellis ,&nbsp;Kathryn E.L. Smith","doi":"10.1016/j.acags.2024.100215","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal marsh wetlands experience variations in vertical gains and losses through time, which have allowed them to infill relict topography and record variations in drivers. The stratigraphic unit associated with the development of the marsh also reflects the long-term importance of key ecosystem services supplied by the marsh environment, including carbon storage and storm mitigation. Mapping these coastal wetland sediments and the marsh unit thickness is challenging as traditional coastal geophysical tools are not easily deployable (acoustic methods) or are unreliable in saline-soil environments (e.g., ground-penetrating radar), leaving core-based methods the most viable mapping method. In the present study, we utilized prior information on the geologic architecture of the region to select spatial and physical metrics that likely persisted throughout evolution of the marsh during the late Holocene. We then assessed the individual and collective power of these metrics to predict marsh thickness observed from cores. Employing regressive predictive models powered by these data, we improve the quantification of marsh thickness for a coastal fringing marsh within the Grand Bay estuary in Mississippi and Alabama (USA). The information gained from this approach yields improved estimates of the carbon stocks in this environment. Additionally, the stored sediment masses reflect the past, and potential future, persistence of the Grand Bay marsh under historical and present marsh-estuarine sediment exchange fluxes. Such improvements to both the sediment budget of recent marsh stratigraphic units and the spatial extent provide new resources for comparison with large-scale landscape models, the latter of which may be used, when validated, to predict future change and ecosystem transformations.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100215"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal marsh wetlands experience variations in vertical gains and losses through time, which have allowed them to infill relict topography and record variations in drivers. The stratigraphic unit associated with the development of the marsh also reflects the long-term importance of key ecosystem services supplied by the marsh environment, including carbon storage and storm mitigation. Mapping these coastal wetland sediments and the marsh unit thickness is challenging as traditional coastal geophysical tools are not easily deployable (acoustic methods) or are unreliable in saline-soil environments (e.g., ground-penetrating radar), leaving core-based methods the most viable mapping method. In the present study, we utilized prior information on the geologic architecture of the region to select spatial and physical metrics that likely persisted throughout evolution of the marsh during the late Holocene. We then assessed the individual and collective power of these metrics to predict marsh thickness observed from cores. Employing regressive predictive models powered by these data, we improve the quantification of marsh thickness for a coastal fringing marsh within the Grand Bay estuary in Mississippi and Alabama (USA). The information gained from this approach yields improved estimates of the carbon stocks in this environment. Additionally, the stored sediment masses reflect the past, and potential future, persistence of the Grand Bay marsh under historical and present marsh-estuarine sediment exchange fluxes. Such improvements to both the sediment budget of recent marsh stratigraphic units and the spatial extent provide new resources for comparison with large-scale landscape models, the latter of which may be used, when validated, to predict future change and ecosystem transformations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Deformation analysis by an improved similarity transformation Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing Pymaginverse: A python package for global geomagnetic field modeling Automatic variogram inference using pre-trained Convolutional Neural Networks X-ray Micro-CT based characterization of rock cuttings with deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1