Production and characterization of kombucha-like beverage by cocoa (Theobroma cacao) by-product as raw material

IF 7.2 Q1 FOOD SCIENCE & TECHNOLOGY Future Foods Pub Date : 2024-12-15 DOI:10.1016/j.fufo.2024.100528
Lívia de Matos Santos , Mariana Nougalli Roselino , Janaína de Carvalho Alves , Suelen Neris Almeida Viana , Elis dos Reis Requião , Jéssica Maria Rio Branco dos Santos Ferro , Carolina Oliveira de Souza , Camila Duarte Ferreira Ribeiro
{"title":"Production and characterization of kombucha-like beverage by cocoa (Theobroma cacao) by-product as raw material","authors":"Lívia de Matos Santos ,&nbsp;Mariana Nougalli Roselino ,&nbsp;Janaína de Carvalho Alves ,&nbsp;Suelen Neris Almeida Viana ,&nbsp;Elis dos Reis Requião ,&nbsp;Jéssica Maria Rio Branco dos Santos Ferro ,&nbsp;Carolina Oliveira de Souza ,&nbsp;Camila Duarte Ferreira Ribeiro","doi":"10.1016/j.fufo.2024.100528","DOIUrl":null,"url":null,"abstract":"<div><div>Cocoa is one of the most consumed products globally. However, only approximately 20 % of cocoa is utilized, leading to a search for alternatives and ways to utilize the by-products, which represent approximately 80 % of the fruit and have nutritional potential. Therefore, this work aimed to produce and characterize a beverage similar to kombucha using cocoa bean shell (CBS) at different concentrations (0.7 %, 1.5 %, and 2.3 %). The fermented beverage was analyzed for alcohol content, antioxidant activity, structure of symbiotic cultures of bacteria and yeast using scanning electron microscopy (SEM), as well as pH, soluble solids, titratable acidity, color parameters, and total phenolic compounds (TPCs) after 0, 3, 6, 9, and 12 d of storage at 2.7 ± 0.06 °C. The results showed the absence of alcohol content, antioxidant activity in all the analyzed formulations, and dense, interconnected structures in the SEM analysis of symbiotic cultures developed during fermentation. Variations were identified in the analyzed parameters, namely pH (from 3.58 ± 0.01 to 3.61 ± 0.02), soluble solids (ºBrix) (from 7.03 ± 0.06 to 7.13 ± 0.06), and titratable acidity (g of acetic acid/100 ml) (from 0.29 ± 0.00 to 0.31 ± 0.01). Interestingly, concerning color parameter, a significant influence of CBS content on luminosity parameter was evidenced (ranging from 90.25 ± 0.01 to 92.45 ± 0.06) and on reddish hue (with variation from 2.01 ± 0.01 to 1.53 ± 0.07), in addition to variation in TPC content (ranging from 2.33 ± 0.00 to 1.73 ± 0.00). For the sensory profile, the average acceptance rate of the three formulations was 68.6 %, and the average purchase intention ranged 2.98–3.20. High-throughput sequencing revealed that the primary bacterial genera were <em>Komagataeibacter, Acetobacter</em>, and <em>Gluconacetobacter</em>, and the predominant genera of yeasts were <em>Brettanomyces and Pichia</em>. In conclusion, CBS has significant potential for the development of innovative food products.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"11 ","pages":"Article 100528"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524002314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cocoa is one of the most consumed products globally. However, only approximately 20 % of cocoa is utilized, leading to a search for alternatives and ways to utilize the by-products, which represent approximately 80 % of the fruit and have nutritional potential. Therefore, this work aimed to produce and characterize a beverage similar to kombucha using cocoa bean shell (CBS) at different concentrations (0.7 %, 1.5 %, and 2.3 %). The fermented beverage was analyzed for alcohol content, antioxidant activity, structure of symbiotic cultures of bacteria and yeast using scanning electron microscopy (SEM), as well as pH, soluble solids, titratable acidity, color parameters, and total phenolic compounds (TPCs) after 0, 3, 6, 9, and 12 d of storage at 2.7 ± 0.06 °C. The results showed the absence of alcohol content, antioxidant activity in all the analyzed formulations, and dense, interconnected structures in the SEM analysis of symbiotic cultures developed during fermentation. Variations were identified in the analyzed parameters, namely pH (from 3.58 ± 0.01 to 3.61 ± 0.02), soluble solids (ºBrix) (from 7.03 ± 0.06 to 7.13 ± 0.06), and titratable acidity (g of acetic acid/100 ml) (from 0.29 ± 0.00 to 0.31 ± 0.01). Interestingly, concerning color parameter, a significant influence of CBS content on luminosity parameter was evidenced (ranging from 90.25 ± 0.01 to 92.45 ± 0.06) and on reddish hue (with variation from 2.01 ± 0.01 to 1.53 ± 0.07), in addition to variation in TPC content (ranging from 2.33 ± 0.00 to 1.73 ± 0.00). For the sensory profile, the average acceptance rate of the three formulations was 68.6 %, and the average purchase intention ranged 2.98–3.20. High-throughput sequencing revealed that the primary bacterial genera were Komagataeibacter, Acetobacter, and Gluconacetobacter, and the predominant genera of yeasts were Brettanomyces and Pichia. In conclusion, CBS has significant potential for the development of innovative food products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Future Foods
Future Foods Agricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍: Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation. The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices. Abstracting and indexing: Scopus Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (ESCI) SCImago Journal Rank (SJR) SNIP
期刊最新文献
Bacterial nanocellulose and its oxidized form as functional carriers for pomegranate peel extract: A sustainable approach to bioactive delivery Increasing food sustainability by utilization of biowaste to grow mealworms and their nutrient profile as human food Microalgal proteins as ingredients for creating dairy mimetic products: Prospects for substituting bovine milk proteins Physical and functional characterization of whey protein-lignin biocomposite films for food packaging applications The forgotten factor: Exploring consumer perceptions of artificial intelligence in the food and agriculture systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1