{"title":"Applications of dynamics metamodels of an eccentric crank-slider mechanism in the initial phase of their design","authors":"Andrzej Urbaś, Jacek Stadnicki","doi":"10.1016/j.mechmachtheory.2024.105886","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of dynamics metamodels to predict the behavior of an eccentric crank-slider mechanism is presented. The mathematical model of the system is elaborated using the formalism of joint coordinates, homogeneous transformations matrices, and Lagrange equations of the second kind. The flexibility of the drive and links, friction in joints, and external impact on the slider, for example, in the form of a bumper, are considered in the proposed model. The appropriate indicators are introduced to assess the mentioned phenomena based on the values of the kinetic energy of the slider and driving torque.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"205 ","pages":"Article 105886"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24003136","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of dynamics metamodels to predict the behavior of an eccentric crank-slider mechanism is presented. The mathematical model of the system is elaborated using the formalism of joint coordinates, homogeneous transformations matrices, and Lagrange equations of the second kind. The flexibility of the drive and links, friction in joints, and external impact on the slider, for example, in the form of a bumper, are considered in the proposed model. The appropriate indicators are introduced to assess the mentioned phenomena based on the values of the kinetic energy of the slider and driving torque.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry