Jie Bao, Jiawei Kang, Junfeng Zhang, Zijie Zhang, Jiaqi Han
{"title":"A dynamic control method for airport ground movement optimization considering adaptive traffic situation and data-driven conflict priority","authors":"Jie Bao, Jiawei Kang, Junfeng Zhang, Zijie Zhang, Jiaqi Han","doi":"10.1016/j.jairtraman.2025.102753","DOIUrl":null,"url":null,"abstract":"<div><div>The primary objective of this study is to address the taxiing uncertainty in airport ground movement optimization with a novel dynamic control method considering adaptive traffic situation and data-driven conflict priority. To better characterize the airport surface traffic situation, a refined link-level unimpeded taxi time (UTT) estimation method is designed to improve the UTT prediction accuracy, and a comprehensive airport operation evaluation method is developed to identify similar surface traffic situation scenarios. Then, a data-driven method is proposed to discover contributing factors to conflict priority assignment and obtain more realistic conflict resolution behaviors. Finally, the adaptive traffic situation and updated conflict priority approach are embedded into the proposed dynamic airport ground movement optimization framework. One month aircraft trajectory data is collected from a representative mega airport in China to illustrate the procedure. The results reveal that the dynamic control method could achieve better performance of airport ground movement than sequential approach through timely path-adjustment and effective collaboration with other aircraft. Moreover, the adaptive traffic situation approach could achieve better trade-off between computation efficiency and optimal solution, and the updated conflict priority approach tends to coordinate the taxiing aircraft to the route plan with lower additional taxi time and achieves a more balanced utilization of taxiway network. The study provides a promising approach to generate real-time conflict-free trajectories for airport operation in future surface trajectory-based operations (TBO) scenarios.</div></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"124 ","pages":"Article 102753"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699725000158","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The primary objective of this study is to address the taxiing uncertainty in airport ground movement optimization with a novel dynamic control method considering adaptive traffic situation and data-driven conflict priority. To better characterize the airport surface traffic situation, a refined link-level unimpeded taxi time (UTT) estimation method is designed to improve the UTT prediction accuracy, and a comprehensive airport operation evaluation method is developed to identify similar surface traffic situation scenarios. Then, a data-driven method is proposed to discover contributing factors to conflict priority assignment and obtain more realistic conflict resolution behaviors. Finally, the adaptive traffic situation and updated conflict priority approach are embedded into the proposed dynamic airport ground movement optimization framework. One month aircraft trajectory data is collected from a representative mega airport in China to illustrate the procedure. The results reveal that the dynamic control method could achieve better performance of airport ground movement than sequential approach through timely path-adjustment and effective collaboration with other aircraft. Moreover, the adaptive traffic situation approach could achieve better trade-off between computation efficiency and optimal solution, and the updated conflict priority approach tends to coordinate the taxiing aircraft to the route plan with lower additional taxi time and achieves a more balanced utilization of taxiway network. The study provides a promising approach to generate real-time conflict-free trajectories for airport operation in future surface trajectory-based operations (TBO) scenarios.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability