Evaluation of thermodynamic contributions to extraction of medical devices by organic solvents as a sample preparation step in chemical characterization of medical devices

Jianwei Li
{"title":"Evaluation of thermodynamic contributions to extraction of medical devices by organic solvents as a sample preparation step in chemical characterization of medical devices","authors":"Jianwei Li","doi":"10.1016/j.jcoa.2024.100199","DOIUrl":null,"url":null,"abstract":"<div><div>The thermodynamic contribution to extraction of medical devices by organic solvents as a first sample preparation step in chemical characterization studies is evaluated by Abraham's solvation parameter model using five representative materials (low density polyethylene or LDPE, silicone, polyurethane or PU, polyoxymethylene or POM, and polyacrylate or PA) and ten solvents (methanol, ethanol, isopropanol, acetonitrile, ethylene glycol, acetone, butanone, hexane, olive oil, and triolein). The Abraham's model is used to predict the material-solvent partition system coefficients by the corresponding partition system constants and representative extractables. The partition system constants are indirectly derived by a “thermodynamic circle conversion” method, based on material-water partition systems and solvent- water partition systems or material-air partition systems and solvent-air water partition systems. The material-solvent partition coefficient, <span><math><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span>=<span><math><mrow><msub><mi>C</mi><mi>M</mi></msub><mo>/</mo><msub><mi>C</mi><mrow><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub></mrow></math></span>, defined as the concentration in the material phase divided by the concentration in the solvent phase, is used as the solvent extraction strength. <span><math><mrow><mi>log</mi><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> values are predicted for all material-solvent pairs using the representative extractables, mostly from Wayne state university experimental descriptor database (WSUEDD). The predictive <span><math><mrow><mi>log</mi><mo>(</mo><msub><mi>P</mi><mrow><mi>M</mi><mo>/</mo><mi>S</mi><mi>o</mi><mi>l</mi><mi>v</mi><mi>e</mi><mi>n</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> values of material-solvent pairs are considered as the upper bound, indicating the significance of partitioning effect in solvent extraction. The calculation results using water-based or air-based partition systems are also compared. The predictive results are discussed in relation to the solvent-material interaction or swelling as well. Several conclusions can be drawn from this study. First, the predictive consistency of two conversion systems (water-based or air-based) is established, indicating the accuracy and robustness of Abraham's model. Second, the predicted partition coefficients are confirmed by available experimental values (LDPE and silicone), and the predicted solvent extraction strengths are supported by available experimental extraction data. Third, the kinetic effect, rather than the thermodynamic effect, is the dominant extractables release process in sample preparation step of chemical characterization studies. The solvent selection in these studies should be optimized based mainly on the diffusional kinetics and solvent-material interactions (swelling effect). Fourth, acetone and butanone can be the general-purpose solvent for the extraction of all materials, thereby eliminating the need for three solvents in chemical characterization studies. Finally, Abraham's solvation parameter model is demonstrated as an invaluable tool in understanding and differentiating the solvent extraction processes.</div></div>","PeriodicalId":93576,"journal":{"name":"Journal of chromatography open","volume":"7 ","pages":"Article 100199"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatography open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772391724000860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermodynamic contribution to extraction of medical devices by organic solvents as a first sample preparation step in chemical characterization studies is evaluated by Abraham's solvation parameter model using five representative materials (low density polyethylene or LDPE, silicone, polyurethane or PU, polyoxymethylene or POM, and polyacrylate or PA) and ten solvents (methanol, ethanol, isopropanol, acetonitrile, ethylene glycol, acetone, butanone, hexane, olive oil, and triolein). The Abraham's model is used to predict the material-solvent partition system coefficients by the corresponding partition system constants and representative extractables. The partition system constants are indirectly derived by a “thermodynamic circle conversion” method, based on material-water partition systems and solvent- water partition systems or material-air partition systems and solvent-air water partition systems. The material-solvent partition coefficient, PM/Solvent=CM/CSolvent, defined as the concentration in the material phase divided by the concentration in the solvent phase, is used as the solvent extraction strength. log(PM/Solvent) values are predicted for all material-solvent pairs using the representative extractables, mostly from Wayne state university experimental descriptor database (WSUEDD). The predictive log(PM/Solvent) values of material-solvent pairs are considered as the upper bound, indicating the significance of partitioning effect in solvent extraction. The calculation results using water-based or air-based partition systems are also compared. The predictive results are discussed in relation to the solvent-material interaction or swelling as well. Several conclusions can be drawn from this study. First, the predictive consistency of two conversion systems (water-based or air-based) is established, indicating the accuracy and robustness of Abraham's model. Second, the predicted partition coefficients are confirmed by available experimental values (LDPE and silicone), and the predicted solvent extraction strengths are supported by available experimental extraction data. Third, the kinetic effect, rather than the thermodynamic effect, is the dominant extractables release process in sample preparation step of chemical characterization studies. The solvent selection in these studies should be optimized based mainly on the diffusional kinetics and solvent-material interactions (swelling effect). Fourth, acetone and butanone can be the general-purpose solvent for the extraction of all materials, thereby eliminating the need for three solvents in chemical characterization studies. Finally, Abraham's solvation parameter model is demonstrated as an invaluable tool in understanding and differentiating the solvent extraction processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of chromatography open
Journal of chromatography open Analytical Chemistry
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Semi-preparative on-line supercritical fluid extraction-supercritical fluid chromatography for solid-state injection and purification Evaluation of trap discs for root exudate eco-friendly sampling using rhizoboxes: Application to untargeted screening of organic compounds by gas chromatography hyphenated with high resolution mass spectrometry Identifying skin surface chemicals as potential tuberculosis diagnostic biomarkers using ultra performance liquid chromatography-high resolution mass spectrometry Comprehensive characterization and identification of chemical constituents of Pingwei Powder by ultra high performance liquid chromatography tandem quadrupole-time-of-flight tandem mass spectrometry Development of miniaturized autonomous and versatile gas chromatograph for Volatile Organic Compounds monitoring using Nano-Gravimetric-Detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1