Status update of NASAs assessment of the biological contamination threat of crewed mars surface missions

IF 2.9 3区 生物学 Q2 ASTRONOMY & ASTROPHYSICS Life Sciences in Space Research Pub Date : 2025-01-22 DOI:10.1016/j.lssr.2025.01.005
Bette Siegel , J. Andy Spry , Elaine Seasly , J. Nick Benardini
{"title":"Status update of NASAs assessment of the biological contamination threat of crewed mars surface missions","authors":"Bette Siegel ,&nbsp;J. Andy Spry ,&nbsp;Elaine Seasly ,&nbsp;J. Nick Benardini","doi":"10.1016/j.lssr.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>As we prepare for a future first mission to Mars with a human crew, the United States, under the Outer Space Treaty of 1967, has an obligation to protect against harmful contamination of the red planet and to protect the Earth from the potential harmful effects of material brought from Mars. In previous years NASA has partnered with the Committee on Space Research (COSPAR), the European Space Agency (ESA), the Japanese Aerospace Exploration Agency (JAXA) and other space exploration organizations to conduct a series of workshops on identifying knowledge gaps for protecting Mars from Earth microorganisms during such a crewed mission, and for protecting Earth from a potential Martian biosphere, should it exist. The current international planetary protection consensus policy (COSPAR, 2024) only has high-level guidance for crewed missions thus continuing conversations are needed to further define specific requirements for implementing a crewed missions to Mars.</div><div>In this paper, we are surveying the biological contamination tradespace to capture and understand the scope of terrestrial microbiology present on a crewed Mars mission. This is a first step to ensure we can manage the harmful biological contamination threat to a putative Martian biosphere and that terrestrial biological contamination will be controlled. Additionally, we are working towards developing a common understanding and basis of assessment of the contamination thresholds that can be used to describe “how much is too much” from a policy point of view. Specifically, we are providing estimates of what the biological contamination will be for a 30 sol stay with two crew members on the surface of Mars.</div><div>The study is to identify the sources and estimate the scale of biological contamination a human mission might bring to the surface of Mars, and to identify where we can potentially reduce or mitigate that contamination. This work does not consider backward contamination to Earth from a crewed mission to Mars, or orbital contamination in any detail. The architecture that we studied is described in HEOMD 415 (Hoffman 2022) which details a “small footprint” mission that would consist of 4 crew members for the trip to Mars, with 2 crew staying in orbit and 2 going to the surface of Mars in a 3 × 25Ton lander configuration, as well as a variant that used a single, larger lander concept. In these concepts, crew would stay in a pressurized rover and not a fixed habitat. The crew would be on the surface for approximately 30 sols in this minimum mission. It is important to note that there is no designated NASA architecture for a crewed mission to Mars and that the one we used is already in the process of being further updated.</div></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"45 ","pages":"Pages 25-33"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552425000057","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

As we prepare for a future first mission to Mars with a human crew, the United States, under the Outer Space Treaty of 1967, has an obligation to protect against harmful contamination of the red planet and to protect the Earth from the potential harmful effects of material brought from Mars. In previous years NASA has partnered with the Committee on Space Research (COSPAR), the European Space Agency (ESA), the Japanese Aerospace Exploration Agency (JAXA) and other space exploration organizations to conduct a series of workshops on identifying knowledge gaps for protecting Mars from Earth microorganisms during such a crewed mission, and for protecting Earth from a potential Martian biosphere, should it exist. The current international planetary protection consensus policy (COSPAR, 2024) only has high-level guidance for crewed missions thus continuing conversations are needed to further define specific requirements for implementing a crewed missions to Mars.
In this paper, we are surveying the biological contamination tradespace to capture and understand the scope of terrestrial microbiology present on a crewed Mars mission. This is a first step to ensure we can manage the harmful biological contamination threat to a putative Martian biosphere and that terrestrial biological contamination will be controlled. Additionally, we are working towards developing a common understanding and basis of assessment of the contamination thresholds that can be used to describe “how much is too much” from a policy point of view. Specifically, we are providing estimates of what the biological contamination will be for a 30 sol stay with two crew members on the surface of Mars.
The study is to identify the sources and estimate the scale of biological contamination a human mission might bring to the surface of Mars, and to identify where we can potentially reduce or mitigate that contamination. This work does not consider backward contamination to Earth from a crewed mission to Mars, or orbital contamination in any detail. The architecture that we studied is described in HEOMD 415 (Hoffman 2022) which details a “small footprint” mission that would consist of 4 crew members for the trip to Mars, with 2 crew staying in orbit and 2 going to the surface of Mars in a 3 × 25Ton lander configuration, as well as a variant that used a single, larger lander concept. In these concepts, crew would stay in a pressurized rover and not a fixed habitat. The crew would be on the surface for approximately 30 sols in this minimum mission. It is important to note that there is no designated NASA architecture for a crewed mission to Mars and that the one we used is already in the process of being further updated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Sciences in Space Research
Life Sciences in Space Research Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
5.30
自引率
8.00%
发文量
69
期刊介绍: Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research. Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.
期刊最新文献
Lunar dust induces minimal pulmonary toxicity compared to Earth dust Effects of X-ray irradiation and housing conditions on mitochondria in Peromyscus maniculatus IFC - Editorial Board Biofilm dynamics in space and their potential for sustainable space exploration – A comprehensive review Solid waste management and resource recovery during the 4-crew 180-day CELSS integrated experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1