Neuronal heterogeneity in the ventral tegmental area: Distinct contributions to reward circuitry and motivated behavior

N. Dalton Fitzgerald, Jeremy J. Day
{"title":"Neuronal heterogeneity in the ventral tegmental area: Distinct contributions to reward circuitry and motivated behavior","authors":"N. Dalton Fitzgerald,&nbsp;Jeremy J. Day","doi":"10.1016/j.addicn.2024.100191","DOIUrl":null,"url":null,"abstract":"<div><div>The ventral tegmental area (VTA) is a critical component of brain reward circuitry that influences motivation, learning, and emotional regulation. Although this role was traditionally attributed primarily to VTA dopamine (DA) neurons, recent advances in transcriptomics and intersectional genetics have revealed significant cell type heterogeneity within the VTA, challenging these established notions. Distinct subtypes of DA neurons can be identified across the VTA and substantia nigra pars compacta (SNc) by characteristics that include gene expression patterns (molecular identity), connectivity motifs (network identity), and patterns of task-linked activity and neurotransmitter release (computational identity). This review aims to synthesize current knowledge of diverse neuronal populations in the VTA, including distinct subtypes of DA, glutamate (GLUT), and GABAergic neurons and combinatorial cells alongside well-characterized markers of these neuronal subclasses. Furthermore, this review highlights known projection targets and the role of diverse VTA cell types in motivated behavior. Finally, we highlight emerging intersectional techniques that enable targeted studies of the vast array of cell types and discuss areas of research important for the future direction of the field. Understanding VTA cell type heterogeneity may yield new insights into the reward system, offering potential avenues for treating substance use disorders and other related conditions.</div></div>","PeriodicalId":72067,"journal":{"name":"Addiction neuroscience","volume":"14 ","pages":"Article 100191"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772392524000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ventral tegmental area (VTA) is a critical component of brain reward circuitry that influences motivation, learning, and emotional regulation. Although this role was traditionally attributed primarily to VTA dopamine (DA) neurons, recent advances in transcriptomics and intersectional genetics have revealed significant cell type heterogeneity within the VTA, challenging these established notions. Distinct subtypes of DA neurons can be identified across the VTA and substantia nigra pars compacta (SNc) by characteristics that include gene expression patterns (molecular identity), connectivity motifs (network identity), and patterns of task-linked activity and neurotransmitter release (computational identity). This review aims to synthesize current knowledge of diverse neuronal populations in the VTA, including distinct subtypes of DA, glutamate (GLUT), and GABAergic neurons and combinatorial cells alongside well-characterized markers of these neuronal subclasses. Furthermore, this review highlights known projection targets and the role of diverse VTA cell types in motivated behavior. Finally, we highlight emerging intersectional techniques that enable targeted studies of the vast array of cell types and discuss areas of research important for the future direction of the field. Understanding VTA cell type heterogeneity may yield new insights into the reward system, offering potential avenues for treating substance use disorders and other related conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Addiction neuroscience
Addiction neuroscience Neuroscience (General)
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
118 days
期刊最新文献
Endogenous regulator of G protein signaling 14 (RGS14) blunts cocaine-induced emotionally motivated behaviors in female mice Presence of distinct operant phenotypes and transient withdrawal-induced escalation of operant ethanol intake in female rats Editorial Board Contents Biotin's protective effects against nicotine withdrawal-induced anxiety and depression: Mechanistic insights into serotonin, inflammation, BDNF, and oxidative stress in male rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1