Meredith G.L. Brown , Matt G. Peterson , Irina K. Tezaur , Kara J .Peterson , Diana L. Bull
{"title":"Random forest regression feature importance for climate impact pathway detection","authors":"Meredith G.L. Brown , Matt G. Peterson , Irina K. Tezaur , Kara J .Peterson , Diana L. Bull","doi":"10.1016/j.cam.2024.116479","DOIUrl":null,"url":null,"abstract":"<div><div>Disturbances to the climate system, both natural and anthropogenic, have far reaching impacts that are not always easy to identify or quantify using traditional climate science analyses or causal modeling techniques. In this paper, we develop a novel technique for discovering and ranking the chain of spatio-temporal downstream impacts of a climate source, referred to herein as a source-impact pathway, using Random Forest Regression (RFR) and SHapley Additive exPlanation (SHAP) feature importances. Rather than utilizing RFR for classification or regression tasks (the most common use case for RFR), we propose a fundamentally new workflow in which we: (i) train random forest (RF) regressors on a set of spatio-temporal features of interest, (ii) calculate their pair-wise feature importances using the SHAP weights associated with those features, and (iii) translate these feature importances into a weighted pathway network (i.e., a weighted directed graph), which can be used to trace out and rank interdependencies between climate features and/or modalities. Importantly, while herein we employ RFR and SHAP feature importance in steps (i) and (ii) of our algorithm, our novel workflow is in no way tied to these approaches, which could be replaced with <em>any</em> regression and sensitivity method, respectively. We adopt a tiered verification approach to verify our new pathway identification methodology. In this approach, we apply our method to ensembles of data generated by running two increasingly complex benchmarks: (i) a set of synthetic coupled equations, and (ii) a fully coupled simulation of the 1991 eruption of Mount Pinatubo in the Philippines performed using a modified version 2 of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SMv2). We find that our RFR feature importance-based approach can accurately detect known pathways of impact for both test cases.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"464 ","pages":"Article 116479"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724007271","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Disturbances to the climate system, both natural and anthropogenic, have far reaching impacts that are not always easy to identify or quantify using traditional climate science analyses or causal modeling techniques. In this paper, we develop a novel technique for discovering and ranking the chain of spatio-temporal downstream impacts of a climate source, referred to herein as a source-impact pathway, using Random Forest Regression (RFR) and SHapley Additive exPlanation (SHAP) feature importances. Rather than utilizing RFR for classification or regression tasks (the most common use case for RFR), we propose a fundamentally new workflow in which we: (i) train random forest (RF) regressors on a set of spatio-temporal features of interest, (ii) calculate their pair-wise feature importances using the SHAP weights associated with those features, and (iii) translate these feature importances into a weighted pathway network (i.e., a weighted directed graph), which can be used to trace out and rank interdependencies between climate features and/or modalities. Importantly, while herein we employ RFR and SHAP feature importance in steps (i) and (ii) of our algorithm, our novel workflow is in no way tied to these approaches, which could be replaced with any regression and sensitivity method, respectively. We adopt a tiered verification approach to verify our new pathway identification methodology. In this approach, we apply our method to ensembles of data generated by running two increasingly complex benchmarks: (i) a set of synthetic coupled equations, and (ii) a fully coupled simulation of the 1991 eruption of Mount Pinatubo in the Philippines performed using a modified version 2 of the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SMv2). We find that our RFR feature importance-based approach can accurately detect known pathways of impact for both test cases.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.