S&P-500 vs. Nasdaq-100 price movement prediction with LSTM for different daily periods

Xiang Zhang, Eugene Pinsky
{"title":"S&P-500 vs. Nasdaq-100 price movement prediction with LSTM for different daily periods","authors":"Xiang Zhang,&nbsp;Eugene Pinsky","doi":"10.1016/j.mlwa.2024.100617","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the efficiency of LSTM neural networks in predicting price movements for the two major U.S. stock indices: the S&amp;P-500 and the Nasdaq-100 index. We consider three distinct daily periods: “overnight” (Close-to-Open), “daytime” (Open-to-Close) and “24-hour” (Close-to-Close) trading sessions. Using historical pricing data for these indices since 2000, this study shows how well the standard LSTM model captures price movement patterns to improve short-term trading strategies. The findings reveal that, for the S&amp;P-500, a one-year training with 24-hour periods delivers a 14.5% more return over the Buy-and-Hold strategy. Moreover, combining “overnight” and “daytime” strategies delivers more than 40% return compared to passive index investing. By contrast, for the Nasdaq-100, a shorter training period of three months for “24-hour” periods delivers 90% more return than passive index investing. These results suggest that LSTM effectively learns the unique market dynamics associated with each index and different time periods, offering further insights into how deep learning can enhance financial forecasting and trading opportunities.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"19 ","pages":"Article 100617"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the efficiency of LSTM neural networks in predicting price movements for the two major U.S. stock indices: the S&P-500 and the Nasdaq-100 index. We consider three distinct daily periods: “overnight” (Close-to-Open), “daytime” (Open-to-Close) and “24-hour” (Close-to-Close) trading sessions. Using historical pricing data for these indices since 2000, this study shows how well the standard LSTM model captures price movement patterns to improve short-term trading strategies. The findings reveal that, for the S&P-500, a one-year training with 24-hour periods delivers a 14.5% more return over the Buy-and-Hold strategy. Moreover, combining “overnight” and “daytime” strategies delivers more than 40% return compared to passive index investing. By contrast, for the Nasdaq-100, a shorter training period of three months for “24-hour” periods delivers 90% more return than passive index investing. These results suggest that LSTM effectively learns the unique market dynamics associated with each index and different time periods, offering further insights into how deep learning can enhance financial forecasting and trading opportunities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Corrigendum to “Machine learning for sports betting: should model selection be based on accuracy or calibration?” [Machine Learning with Applications Volume 16, June 2024, 100539] Key technical indicators for stock market prediction Machine learning-driven predictive modeling of mechanical properties in diverse steels Application of machine learning for seam profile identification in robotic welding Uncertainty quantification based on symbolic regression and probabilistic programming and its application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1