N. Garcia-de-Albeniz , M.-P. Ginebra , E. Jiménez-Piqué , C. Mas-Moruno
{"title":"Chemical etching-induced nanoroughness enhances cell response and antibacterial activity on zirconia","authors":"N. Garcia-de-Albeniz , M.-P. Ginebra , E. Jiménez-Piqué , C. Mas-Moruno","doi":"10.1016/j.jeurceramsoc.2025.117236","DOIUrl":null,"url":null,"abstract":"<div><div>Surface topography at the nanoscale plays a crucial role in modulating the biological properties of dental implants. However, the understanding of how the nanoroughness of zirconia affects cell and bacteria responses remains unclear. In this study, chemical etching of 3Y-TZP was explored to develop a nanotopography capable of favoring eukaryotic cell behavior while simultaneously inhibiting bacterial adhesion. Three topographies of different roughness were created by varying the etching time with hydrofluoric acid (i.e., HF15, HF30, and HF60). The etched surfaces exhibited a nanorough topography with randomly distributed nanopits, and surface roughness increased at longer etching times. Mesenchymal stem cell adhesion, spreading, proliferation and mineralization were enhanced on the etched surfaces, compared to flat controls. The roughest surface (HF60) also inhibited <em>S. aureus</em> adhesion and caused significant damage to <em>P. aeruginosa</em>. This study highlights the potential of chemical etching to produce nanorough zirconia with improved biological outcomes.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 7","pages":"Article 117236"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925000561","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Surface topography at the nanoscale plays a crucial role in modulating the biological properties of dental implants. However, the understanding of how the nanoroughness of zirconia affects cell and bacteria responses remains unclear. In this study, chemical etching of 3Y-TZP was explored to develop a nanotopography capable of favoring eukaryotic cell behavior while simultaneously inhibiting bacterial adhesion. Three topographies of different roughness were created by varying the etching time with hydrofluoric acid (i.e., HF15, HF30, and HF60). The etched surfaces exhibited a nanorough topography with randomly distributed nanopits, and surface roughness increased at longer etching times. Mesenchymal stem cell adhesion, spreading, proliferation and mineralization were enhanced on the etched surfaces, compared to flat controls. The roughest surface (HF60) also inhibited S. aureus adhesion and caused significant damage to P. aeruginosa. This study highlights the potential of chemical etching to produce nanorough zirconia with improved biological outcomes.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.